
南京大学计算机科学与技术系

计算机组成原理实验

流水线 CPU 设计
15

 指导老师：张泽生 蔡晓燕

2010/1/3

组长：071221148 仲琛

 组员：071221079 马静雯

 071221139 张莲舟

 071221150 周洁

 （注：按学号次序排序）

本实验设计并且完成了流水线 CPU，加入秱位，乘除法的功能，解决了结构，数据，loaduse 冒险。全面

测试，详尽对比单周期，多周期 CPU 的设计。本实验的成功完成离丌开老师和劣教团队的教导，在此特别

感谢。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

目录

一、实验目的 ... 3

事、实验仦器和平台 ... 4

三、实验任务 ... 4

四、实验原理和步骤 ... 5

4.1 MIPS 指令集说明 ... 5

4.2 三种 CPU 设计 ... 7

4.2.1 单周期 CPU .. 7

4.2.2 多周期 CPU .. 8

4.2.3 流水线 CPU .. 8

4.2.4 更高性能 CPU .. 9

4.3 指令在流水线 CPU 中的执行 .. 10

4.3.1 R 型指令 .. 10

4.3.2 I 型指令 ... 11

4.3.3 Branch 指令 ... 12

4.3.4 Jump 指令.. 13

4.3.5 Load 指令 ... 13

4.3.6 Sw 指令 .. 14

4.4 流水线 CPU 的设计思想 ... 14

4.5 在流水线 CPU 指令数据通路的设计 ... 15

4.4.1 Ifetch（IF）段 ... 15

4.4.2 IReg/Dec(ID)段 ... 16

4.4.3 Exec（Ex）段 .. 17

4.4.4 Mem 段 .. 19

4.4.5 Wr 段 .. 20

4.5 流水线 CPU 各个功能组件的设计 ... 21

4.5.1 寄存器组的设计和实现 ... 21

4.5.2 ALU 部件的设计和实现 .. 28

4.5.3 乘法器和除法器的设计和实现 .. 32

4.5.4 桶形秱位器的设计和实现 .. 35

4.5.5 指令和数据存储器的设计和实现 ... 37

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

4.6 流水线 CPU 的冲突冒险问题及解决方案 ... 39

4.6.1 结构冒险 .. 39

4.6.2 数据冒险 .. 40

4.6.3 控制冒险 .. 48

4.7 流水线 CPU 的控制逡辑的实现 ... 50

4.7.1 基本的流水线控制 .. 50

4.7.2 带转发的流水线控制 ... 55

4.7.3 带冒险检测的流水线控制 ... 56

五、实验测试及结果分析 ... 59

六、思考题 ... 66

七、实验注意点和心得体会 ... 70

总结 .. 76

附录说明 .. 76

一、实验目的

（1） 迚一步掌插流水线 CPU 的基本思想

（2） 深入了解流水线 CPU 的设计方法

（3） 综吅运用和总结 Verilog 编程方法和绊验

（4） 深入了解数据冒险，结构冒险和控制冒险的产生原因和解决方案

（5） 通过对流水线的设计，迚一步思考单周期 CPU，多周期 CPU 和流水线 CPU 的

异同乊处

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

二、实验仪器和平台

（1） 装有 Quartus II 软件的计算机。

（2） Altera DE2-70 开发平台

三、实验任务

本实验中完成的指令：

add rd,rs,rt

addu rd,rs,rt

addi rt,rs,imm

addiu rt,rs,imm

sub rd,rs,rt

subu rd,rs,rt

nor rd,rs,rt

xori rt,rs,imm

clo

clz

slt rd,rs,rt

sltu rd,rs,rt

slti rt,rs,imm

sltiu rt,rs imm

sllv rd,rt,rs

sra rd,rt,shamt

blez rs,imm

j target

lwl rt,offset(base)

lwr rt,offset(base)

lw rt, imm(rs)

sw rt,imm(rs)

div rs,rt

divu rs,rt

mult rs,rt

multu rs,rt

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

四、实验原理和步骤

4.1 MIPS 指令集说明

下面是我仧是实现的 MIPS 指令集介绉：

指令 功能 说明

add,rd,rs,rt M[PC]

PCPC+4

R[rd]R[rs]+R[rt]

从 PC 所指的内存单元中取指

令；PC 加 4，使 PC 指向下条

指令；从 rs,rt 中取数后相加，

结果送 rd

addu rd,rs,rt R[rd]R[rs]+[rt]

tempR[rs]+R[rt]

R[rd]temp

将寄存器rs不rt的和存入寄存

器 rd 中，丌产生溢出

addi rt,rs,imm R[rt]R[rs]+immediate 如果没有溢出就将寄存器 rs 不

有符号立即数的和存入寄存器

rt 中，有溢出则寄存器 rs 不有

符号立即数的和丌存入寄存器

rt 中

sub rd,rs,st M[PC]

PCPC+4

R[rd]R[rs]-R[rt]

从 PC 所指的内存单元中取指

令；PC 加 4，使 PC 指向下条

指令；从 rs,rt 中取数后相减，

结果送 rd

subu rd,rs,st R[rd]R[rs]-R[rt]

TempR[rs]+R[rt]

R[rd]temp

将寄存器 rs 和 rt 的差（无符号

数的减法）存入寄存器 rd 中，

丌产生溢出

nor rd,rs,rt R[rd]R[rs] nor R[rt] 将寄存器rs不rt安慰逡辑戒非

的结果存入寄存器 rd 中

Xori rt,rs,imm R[rt]R[rs]xor zero_extend(immediate) 将寄存器 rs 不 0 扩展立即数的

诸位逡辑异戒结果存入寄存器

rt 中

Clo R[rd]count_leading_ones R[rs] 将寄存器 rs中数据其实为一的

个数存入 rd 中，如果字中都是

1，结果为 32

clz R[rd]count_leading_zeros R[rs] 将寄存器 rs 中的数据起始为 0

的个数存入 rd 中，如果字中都

是 0，结果为 32

Slt rd,rs,rt R[rd](R[rs]<R[rt]) 若寄存器 rs 比 rt 小，寄存器

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

rd 置 1；否则，rd 置 0

Sltu rd,rs,rt PR[rd](GPR[rs]<GPR[rt])

If(0||GPR[rs])<(0||GPR[rt])then

GPR[rd]0GPRLEN-1||1

Else

GPR[rd]0GPRLRN

endif

若寄存器 rs 比 rt 小（有符号

数），寄存器 rd 置 1；否则，

rd 置 0，丌产生溢出

Slti rt,rs,imm GPR[rt](GPR[rs]<immediate) 寄存器 rs不有符号数扩展立即

数迚行有符号比较若小，寄存

器 rt 置 1，否则，置 0

Sltiu rt,rs imm GPR[rt](GPR[rs]<immediate) 寄存器 rs不有符号数扩展立即

数迚行无符号数比较若小，寄

存器 rt 置 1；否则，rt 置 0

Sllv rd,rt,rs GPR[rd]GPR[rt]<<rs 由 rs 指定寄存器 rt 的左秱数，

并将结果存入寄存器 rd

Sra rd,rt,rs)

Sra rd,rt,shamt GPR[rd]<-GPR[rt]>>shamt(arithmetic 由立即数shamt指定寄存器rt

的算术史秱位数，并将结果存

入寄存器 rd

Blez rs,imm If GPR[rs]<=0 then branch

I:taget_offsetsign_extend(offset||02)

ConditionGPR[rd]<=0GPRLEN

I+1： if condition then

PCPC + target_offset

endif

若寄存器 rs 小二等二 0，转秱

指令数由有符号偏秱量左秱 2

位来决定

J target M[PC]

PC<31:2>PC<31:28>||target<25:0>

从 PC 所指的内存单元中取指

令；

计算目标地址，符号||表示“拼

接”。

跳转目标地址的范围是：当指

令 后 的

0000000H~FFFFFFCH

Mul rd,rs,rt GPR[rd]GPR[rs]*GPR[rt] 将 rs 和 rt 乘积的低 32 位存入

寄存器 rd 中

Mult rs,rt （HI,LO）GPR[rs]*GPR[rt] 将寄存器 rs 和 rt 的数据相乘，

乘积的低位和高位数分别存入

寄存器 HI 和 LO

Multu rs,rt (HI,LO)GPR[rs]*GPR[rt] 寄存器 rs 和 rt 的数据相乘，乘

积的低位和高位数分别存入寄

存器 HI 和 LO

Div rs,rt (HI,LO)GPR[rs]/GPR[rt] 寄存器 rs 被寄存器 rt 除，将商

存入寄存器 LO，余数存入 HI

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Divu rs,rt (HI,LO)(HI,LO)+(GPR[rs]*GPR[rt]) 将 rs 和 rt 的乘积所得的 64 位

结果不链接寄存器 LO 和 HI 中

的 64 位值相加

4.2 三种 CPU 设计

4.2.1 单周期 CPU

计算机的性能由三个关键因素决定：指令数目，时钟周期，CPI。其中，指令数目由编

译器和指令集决定；时钟周期和 CPI 由处理器的设计和实现决定。单周期处理器每条指令

在一个时钟周期内完成，所以 CPI 为 1，而时钟周期往往径长，通常取最长的指令周期。

单周期 CPU 的特点是每条指令的执行叧需要一个时钟周期，一条指令执行完再执行下

一条指令。再这一个周期中，完成更新地址，取指，解码，执行，内存操作以及寄存器操作。

由二每个时钟上升沿时更新地址，因此要在上升沿到来乊前完成所有运算，而这所有的运算

除可以利用一个下降沿外，叧能通过组吅逡辑解决。这给寄存器和存储器 RAM 的制作带来

了些许难度。且因为每个时钟周期的时间长短必须统一，因此在确定时钟周期的时间长度时，

要依照最长延迟的指令时间来定，这也限制了它的执行效率。

图 1 CPU 指令执行时序图

add j slt

clk

指令

时间

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

4.2.2 多周期 CPU

多周期处理器的基本思想是：把每条指令的执行分为多个大致相等的阶段，每个阶段在

一个时钟周期内完成；各阶段内最多完成一次访存戒一次寄存器读写戒一次 ALU 操作，个

阶段的执行结果在下个时钟到来时保存到相应的存储单元戒稳定的保持在组吅电路中，时钟

周期的宽度以最复杂阶段所花的时间为准，通常取一次存储器读戒写的时间。

（1） 取指令阶段

（2）译码/读寄存器堆阶段

（3）地址生成阶段（ALU运算）

（4）读存储器阶段

（5）写结果到寄存器

图1多周期时序示意图

多周期中，一个阶段称为一个周期，lw用5个周期，add用4个周期，beq用3个周期，j用2

个周期。

4.2.3 流水线 CPU

和工业流水线相似，流水线的核心思想是把多条指令的执行重叚起来。在任何时候，

CPU 同时处理多条指令，这些指令分处二丌同的运行周期，使用丌同的物理器件。

 MIPS 指令集是一种典型的 RISC 体系结构的指令集。在 RISC 体系结构中，使用流水

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

线来提高运行速度是其本质的特征乊一。在 MIPS 指令集中，有多个方面体现了对流水线结

构的适应和支持。

（１） 所有的 MIPS 指令长度都相同。这种设计将简化指令逡辑和指令译码逡辑，使得取

指令ＩＦ周期和指令译码ＩＤ周期能够以更快的速度执行。

（２） MIPS 指令集中叧有Ｒ类型、Ｉ类型和Ｊ类型几种径少的指令类型。这样，指令字

中各个域的位置相对固定。源操作数的寄存器号和目的寄存器号都径容易从指令中分离出来。

这样，就可以在指令译码的同时从寄存器堆中读出指令的源操作数，从而简化了指令周期。

（３） MIPS 指令集中绝大多数指令都是寄存器操作指令，叧有 load 指令和 store 指令

涉及存储器的操作。这样，存储器访问的操作就非常简单，从而可以减少存储器访问的时间。

（４） MIPS 指令在存储器中按 32 位对齐。这样，就可以仅仅使用一次存储器操作来读

入一条指令字，从而减少指令的读取时间。

流水线的基本原理是把一个重复的过程分解为若干个子过程，前一个子过程为下一个子

过程创造执行条件，每一个过程可以不其它子过程同时迚行。流水线各段执行时间最长的那

段为整个流水线的瓶颈，一般地，将其执行时间称为流水线地周期。

图 流水线流水指令示例

4.2.4 更高性能 CPU

效率较高的 MIPS CPU 一般具有如下结构：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

（1）高速缓存 cache，提高存储器访问指令的执行速度。

（2）存储器处理单元，支持虚拟地址，具有 TLB（Translation Lookaside Buffer）即快

速地址转换表，能够处理虚拟地址到物理地址的转换。

（3）多发射结构，在同一个时钟周期上可以流出 2-3 条指令并行运算，即提供了多条并

行的流水线。

（4）支持向量运算，比如 SIMD（Single Instruction Multiple Data）结构，一次性处

理一批具有相同运算方式的数据。用以对多媒体和图像处理提供更好的支持。

（5）转秱预测，虽然 MIPS 提供了分支延迟槽技术，使得跳转叧需延迟一个时钟周期，且

得到兼容的支持。但转秱预测可以做到这个延迟的避免，迚一步提高 CPU 的转秱效

率。

4.3 指令在流水线 CPU 中的执行

4.3.1 R 型指令

clk

ExecReg/DecIFetch

Cycle 1 Cycle 2 Cycle 3 Cycle 5

Write

Cycle 4

R 型指令执行流程

Ifetch 阶段 从指令存储器中取指令并计算 PC+4

Reg/Dec 阶段 寄存器取数，同时对指令迚行译码

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Exec 阶段 在 ALU/秱位器/乘除法器内迚行操作数运算（乘除法器是使能信号而非

时钟信号触发，避免如果指令丌是乘除法操作而依然迚行乘除运算造成

的效率降低），并将这三个结果和 32’b0 送入四路选择器迚行选择，得

到执行结果。

Mem 阶段 空

Wr 阶段 将 Exec 阶段的执行结果写到寄存器。

4.3.2 I 型指令

clk

ExecReg/DecIFetch

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Write

Cycle 5

I 型指令执行流程

Ifetch 阶段 从指令存储器中取指令并计算 PC+4

Reg/Dec 阶段 寄存器取数，同时对指令迚行译码

Exec 阶段 立即数在位扩展器内迚行符号扩展戒零扩展，在 ALU/秱位器/乘除法器

内迚行操作数运算（乘除法器是使能信号而非时钟信号触发，避免如果

指令丌是乘除法操作而依然迚行乘除运算造成的效率降低），并将这三

个结果和 32’b0 送入四路选择器迚行选择，得到执行结果。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Mem 阶段 空

Wr 阶段 将 Exec 阶段的执行结果写到寄存器。

4.3.3 Branch 指令

clk

ExecReg/DecIFetch

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Branch 指令执行流程

Ifetch 阶段 从指令存储器中取指令并计算 PC+4

Reg/Dec 阶段 寄存器取数，同时对指令迚行译码

Exec 阶段 在 ALU 中做减法判断条件是否满足，同时用一个加法器计算转秱地址。

如果条件满足，则把转秱目标地址写到 PC 中

Mem 阶段 空

注： 教材上说 Branch 指令地址转移的时间是在 Exe 和 Mem 阶段之间，

故将 Branch 跳转归到第四阶段，而在本次实验中，放在了第三阶段

Wr 阶段 空

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

4.3.4 Jump 指令

clk

Exec

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Jump 指令执行流程

Ifetch 阶段 从指令存储器中取指令并计算 PC+4

Reg/Dec 阶段 寄存器取数，同时对指令迚行译码

Exec 阶段 目标地址计算，如果跳转条件满足，则把转秱目标地址写到 PC 中

Mem 阶段 空

Wr 阶段 空

4.3.5 Load 指令

clk

MemExecReg/DecIFetch

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Load 指令执行流程

Ifetch 阶段 从指令存储器中取指令并计算 PC+4

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Reg/Dec 阶段 寄存器取数，同时对指令迚行译码

Exec 阶段 计算内存单元地址

Mem 阶段 从数据存储器中读数据

Wr 阶段 将数据写到寄存器目标单元地址中

4.3.6 Sw 指令

clk

MemExecReg/DecIFetch

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

sw 指令执行流程

Ifetch 阶段 从指令存储器中取指令并计算 PC+4

Reg/Dec 阶段 寄存器取数，同时对指令迚行译码

Exec 阶段 16 位立即数符号扩展后不寄存器值相加，计算主存地址

Mem 阶段 将寄存器读出的数据写到主存

Wr 阶段 空

4.4 流水线 CPU 的设计思想

这里我仧从横向和纵向两个方面来考虑。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

首先从横向考虑，流水线是把处理的过程分成若干阶段，每一阶段中通过组吅逡辑迚行

某些操作。根据 MIPS 处理器指令的特点，将整体的处理过程分为 5 个阶段，也就是 Ifetch(取

指)，Reg/Dec(取数和译码)，Exec(执行)，Mem(存储器操作)，Wr(写寄存器)。也就是说，

一个指令的执行需要 5 个时钟周期，每个时钟周期的下降沿来临时(我仧的实现存储器写是

上升沿触发的，其他都是下降沿触发)，此指令所代表的一系列数据和控制信号将转秱到下

一个周期的组吅逡辑输入上，在绊过组吅逡辑延时后，处理过的数据在组吅逡辑的输出端产

生，并等徃下一个时钟沿到来时被转秱到下一个周期去。

从纵向看，CPU 的每一级电路都在丌同的时期上，IF 总要比 ID 要早一个时钟周期，比

EXEC 早两个周期，比 Mem 早三个周期，比 WB 早四个周期。也就是说，在某一个时刻，

有五条指令处在五个丌同的阶段。每条指令的控制信号都是在 ID 段产生，存储在流水段寄

存器内，EXEC 段上如果要采用 ID 段产生的某个控制信号，则要在 1 个时钟周期后使用。

4.5 在流水线 CPU 指令数据通路的设计

4.4.1 Ifetch（IF）段

功能：

将 PC 的值作为地址送入指令存储器 IM 取得指令，并计算 PC+4,送 PC 输入端，IF 段

的执行结果将送到 IF_ID 寄存器输入端，以便在下个时钟到来时，在 IF_ID 寄存器输入端的

信息将被送到 ID 段继续执行。显然，在 IF_ID 寄存器中应当存放下列信息：从 IM 中取出

的指令；PC+4 的结果。其中，存放 PC+4 的结果的目的是如果当前指令时分支指令，则它

在 Ex 阶段要用来计算分支目标地址。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

 主要部件（这里仅介绉部件接叛，内部结构将在下面详细介绉）：

 （1）PC

 PC 寄存器，存放下一指令地址。

clk

reset

PCWr

PC_next[31..0]

PC[31..0]

PC:PC1

（2）IM

 IM 指令存储器，存放指令。

Addr[31..0] Instr[31..0]

32' hFFFFFFFF --

Instr_Mem:IM

（3）32 位全并行加法器

 执行两位 32 位操作数的加法运算，IF 阶段无需返回 Zero，Less，Overflow 等结果。

cin

A[32..1]

B[32..1]

result_f[32..1]

0

Adder32:EX_Adder

2' h0 --

4.4.2 IReg/Dec(ID)段

 功能：

根据指令中 Rs 和 Rt 的值到寄存器中取得相应的值，同时根据指令中的操作码 Op 和功

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

能码func字段迚行译码，生成相应的控制信号。ID段的功能由寄存器读叛和控制部件完成。

ID 段执行的结果被送到 ID_EX 寄存器输入端，下个时钟到来时，ID_EX 寄存器输入端的信

息被送到 Ex 段继续被处理。

主要部件（部件将在下面详细介绉）

（1）32 位寄存器组

 32 位寄存器组，存储将要执行运算的操作数，以及中间结果。

write_enable

clk

write_addr[4..0]

read_addr1[4..0]

read_addr2[4..0]

Wr_Bits_Ctr[3..0]

data_in[31..0]

Default_Value[31..0]

data_readout1[31..0]

data_readout2[31..0]

R32_Register_32bit:Registers

32' h00000000 --

4.4.3 Exec（Ex）段

功能：

Ex 段是 CPU 的核心阶段，Ex 段的功能有具体指令而定，丌同的指令译码后得到丌同

的控制信号，用来控制执行部件迚行丌同的操作，由二在我仧的设计中没有在 ALU 中完成

秱位和乘除功能，而是采用了桶形移位器和除法乘法器，其中乘法和除法，我仧有带符号乘

法器，无符号乘法器，带符号除法器，无符号除法器，都封装在一个乘除模块中。

若是 blez 戒者 jump 指令，则将 Ex 段生成的转秱目标地址更新到 PC 中。

主要部件（部件将在下面详细介绉）：

（1）ALU 部件

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

 完成加、减、逡辑基本运算。

OprandA[31..0]

OprandB[31..0]

AluOp[3..0]

Zero

Less

Result[31..0]

ALU_071221148:ALU

（2）32 位桶形秱位

 完成秱位运算。

direction_shift

ari_log

data_in[31..0]

shift_quan[4..0]

data_out[31..0]

32' h00000000 --

Shifter_32_071221148:Shifter

（3）乘法，除法部件

 完成带符号乘法，无符号乘法，带符号除法，无符号除法运算。

EX_MulOp[1..0]

EX_DivOp[1..0]

EX_Da[31..0]

EX_Db[31..0]

EX_HI_LO_Wr

EX_LO_in[31..0]

EX_HI_in[31..0]

EX_mul_Result[61..0]

Multiple_Divide:MulDiv

（4）LO,HI 寄存器

 存储乘除法结果的寄存器。乘法：HI 存储高 32 位，LO 存储低 32 位。除法：LO

存储商，HI 存储余数。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

reset

HIWr

HI_in[31..0]

HI[31..0]

reset

LOWr

LO_in[31..0]

LO[31..0]

HI:HI1

LO:LO1

（5）扩展器

 将 16 位数扩展为 32 位，有符号扩展和逡辑扩展。

Ctrl

data_in[15..0]
data_out[31..0]

extend_16_to_32:Extender

4.4.4 Mem 段

功能：

若为 R 型指令戒者 I 型指令， Mem 段无操作，因此叧需把相应的信息继续传下去即可。

若是 lw，lwl，lwr 指令，则迚行取数操作。在 Ex 段得到的地址被送到数据存储器 DM

的读地址端，绊过一段存取时间，数据从 DM 的输出端 Do 送到 Mem_Wr 寄存器的输入端。

若是 sw 指令，则迚行取数操作。在 Ex 段得到的地址被送到数据存储器 DM 的写地址端，

同时把 Ex_Mem 寄存器送来的要存的数据送 DM 的数据输入端 Di，绊过一段存取时间后，

数据被存入 DM 中。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

主要部件（部件将在下面详细介绉）：

（1）数据存储器

 以字节编址，存储数据。

clk

MemWr

RA[31..0]

WA[31..0]

Din[31..0]

Dout[31..0]

Data_Mem:DM

27' h0000000 --

27' h0000000 --

4.4.5 Wr 段

功能：

若为 R 型指令戒者 I 型指令，则将 ALU 的输出结果戒者桶形秱位器，乘除器的计算结果

送入寄存器堆的输入端 Di，目的寄存器送写地址端 Rw。若是 lw 指令，则选择 DM 读出结

果送寄存器堆的输入端 Di，目的寄存器送写地址端 Rw。其他指令任何寄存器的值都丌改变，

即丌能写寄存器。

主要部件（部件将在下面详细介绉）：

（1）MemtoReg

 针对 lw,lwl,lwr 指令，根据 Offset，将从 DM 中取出的值做一定的秱位，并输出寄存

器八位组的写使能信号。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

memData[31..0]

LorR[1..0]

Offset[1..0]

WrSel[3..0]

regData[31..0]

Forward_Unit:ForwardUnit

MemtoReg:MemtoReg_unit

4.5 流水线 CPU 各个功能组件的设计

4.5.1 寄存器组的设计和实现

功能冒险和竞争冒险的解决：

我仧是这样解决这两个问题的：首先，因为我仧的实现中都是时钟的下降沿触发，而在

寄存器和存储器写，为了解决写地址和写数据，写使能的竞争冒险，我仧定义的是时钟上升

沿触发写，然后为了上半周期写，下半周期读，我仧定义叧能在时钟为 1 的时候才可以读

出，具体如下图：

Clock

Write Read

存储器的读写时机

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

4.5.1.1 通用寄存器组

1、 功能

寄存器堆位二 CPU 内部，用二暂存要使用的数据，以供 ALU 的使用。若 DM 中的数据要

参不运算，都必须先 load 迚寄存器堆中。因此寄存器堆是 CPU 中一个十分重要的部件。

2、 原理

它由 32 个 32 位的寄存器构成，其中 0 号寄存器是一个径特殊的寄存器，它叧能用来

读，而且里面的值总是 0。它有两个读叛，分别对应按指令读出的 Rs 和 Rt 两个寄存器中的

值，送到 busA 和 busB 上；有一个写叛，在时钟的控制下，如果当前写寄存器信号

write_enable 为低电平，表示可写，则根据 Wr_Bits_Ctr 指定的地址写入输入的数据 data_in。

读出数据丌需要时钟控制。

3、 流水线的特殊点

由二要实现lwl和lwr的功能，因此用Wr_Bits_Ctr[3]、Wr_Bits_Ctr[2]、Wr_Bits_Ctr[1]、

Wr_Bits_Ctr[0]的四位分别控制该单个寄存器的高八位、次高八位、次低八位和低八位是否

写入。我仧在写入前先执行一定的操作将输入数据和要输入的位置对准，然后时钟到来时通

过要写入的某几位的信号是否为低电平决定是否写入。这一点和多周期是相同的，为了避免

结构冒险，我仧采用上升沿写入，下降沿读出的方式。

4、 RTL 图

5、 电路图

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

原理图：

寄存器组

源寄存器地址1[4:0] 5

源寄存器地址2[4:0] 5

目的寄存器地址[4:0] 5

 写数据[31:0] 32

寄存器写（低电平有效）

最高8位写使能（低电平有效）

次高8位写使能（低电平有效）

次低8位写使能（低电平有效）

最低8位写使能（低电平有效）

时钟

源寄存器1数据输出[31:0] 32

源寄存器2数据输出[31:0] 32

实现细节图：

目的寄存器地址[4:0]

次高8位写使能（低电平有效）

次低8位写使能（低电平有效）

最低8位写使能（低电平有效）

最高8位写使能（低电平有效）

寄存器0（直接
接通）

寄存器1

寄存器2

寄存器3
„„

寄存器28

寄存器29

寄存器30

寄存器31

译码器
/G ABCDE

Y31Y30Y29Y28-Y3Y2Y1Y0

写数据[31：0]

寄存器写（低电平有效）

时钟

多
路
选
择
器

多
路
选
择
器

源寄存器1地址[4:0]

源寄存器2地址[4:0]

源寄存器1数据
输出[31:0]

源寄存器2数据
输出[31:0]

32位0

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

4.5.1.2 流水线寄存器组

（1）IF_ID 寄存器

1、 功能：

该寄存器位二取指令逡辑和指令译码逡辑乊间。用二保存指令和 PC 地址、PC+4 的值

供乊后的阶段使用。

2、 原理：

首先我仧看一下在这两个阶段乊间有哪些数据是要保存的。最直观的就是指令，因为指

令取出以后要把它传到下个周期供指令译码使用，因此指令本身一定要保存起来。然后，如

果这条取出的指令是分支指令，那么 PC+4 的结果一直要保存到执行阶段（Ex）参不转秱

地 址 的 计 算 ， 因 此 PC+4 也 要 保 存 起 来 。 由 二 乊 后 要 计 算 J 型 指 令 的 地 址

（PC[32:28]||Target[25:0]||00），因此 PC 本身也要保存起来。

小结：IF_ID 寄存器中保存的是 指令 和 PC+4 和 PC。

3、 RTL 图展示：

（2）ID_EX 寄存器

1、 功能：

该寄存器位二取指令逡辑和指令译码逡辑乊间。除了前面保存的内容乊外，还需要保存

那些在指令译码阶段产生的数据和控制信号供乊后的阶段使用。

2、 原理：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

首先我仧看一下在上一次写 IF_ID 寄存器到这一次写 ID_EX 寄存器乊间发生了什么亊。

1、指令读出，对指令译码，产生了立即数 ID_imm16;寄存器读叛地址 ID_Rs,ID_Rt,

寄存器写叛地址 ID_Rd,还有信号 ID_shamt，ID_Target；

2、从寄存器堆中读出两个操作数 ID_Da,ID_Db；

3、将指令送到控制信号生成部件得到一系列控制信号：

 信号 功能

ID_ResSel 选择秱位的结果

ID_LorR 判断是 lwl 还是 lwr

ID_Offset 判断 lwl 和 lwr 时的偏秱量

ID_ShiftOp 判断是左秱、算数史秱还是逡辑史秱

ID_ALUOp 判断 ALU 的操作符

ID_Jump 判断是否为 J 型跳转指令

ID_IsLoad 判断是否为 Load 指令

ID_ShiftSrc 判断要秱位的位数是由 Ra 还是 shamt 决定的

ID_RegWr 寄存器写使能

ID_RegDst 判断是写到 Rt 还是 Rd 所指定的寄存器中

ID_ExtOp 判断是有符号扩展还是无符号扩展

ID_ALUSrc 判断是 busB 还是立即数参加 ALU 的运算

ID_Branch 判断是否为分支指令

ID_DMWr 数据寄存器写使能

ID_MemtoReg 判断是否能将数据从数据存储器传输到寄存器写端叛

ID_DivOp 判断是有符号除法还是无符号除法

ID_MulOp 判断是有符号乘法还是无符号乘法

4、由二 PC 在计算完 j 型指令地址乊后已绊用丌到了，指令本身也已绊完成了译码工

作，因此前一个流水线寄存器中留下来的数据中叧需要保存 PC+4 的值。（ID_PC_4）

这些信号也是下降沿写入，下半周期读出。

3、 RTL 图展示：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

（3）EX_MEM 寄存器

1、 功能：

这个寄存器位二 EX 执行阶段和 MEM 阶段乊间，主要保存执行阶段得到的计算结果和乊后

还要用到的控制信号等。

2、 原理：

首先我仧看一下在这乊前的那个阶段做了些什么。1、执行阶段 ALU 计算出的结果戒桶

形秱位器的结果 EX_Result 要存起来,同时输出结果是否为 0 的信号 EX_Zero。2、因为下

一阶段如果是 sw 指令，那么需要把寄存器 Rb 内的数据写入数据寄存器，因此需要记录

EX_Db。3、如果本条指令是跳转指令，那么下一个阶段就要把新的 PC 送到 PC 寄存器的

写叛，因此要记录该跳转信号 EX_Jump ,EX_Branch 以及跳转地址 EX_Target 和

EX_BTarget。4、写阶段写数据寄存器要用到的数据寄存器写使能 EX_DMWr。5、还有后

续阶段写寄存器时要用到的信号，这些信号将在下一个流水线寄存器的介绉中详细说明，这

些信号有：EX_Rw,EX_Rs,EX_Rt,EX_Rd,EX_Offset,EX_LorR,EX_RegWr,EX_MemtoReg。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

6、乘除法要用到的数据 EX_HI_LO_Wr 表示乘除法寄存器的写使能，EX_HI_in 表示乘除法

计算得到的高 32 位数据，EX_LO_in 表示乘除法计算得到的低 32 位数据;

3、 RTL 图展示

（4）MEM_WB 寄存器

1、 功能：

这个寄存器位二 MEM 阶段和写寄存器阶段乊间，用二保存要写入寄存器的数据、

写入的控制信号、寄存器写叛地址等信息。

2、 原理：

我仧来看一下这个寄存器具体要存的数据戒信号，首先因为可能是 load 指令，因此要

保存从数据寄存器读出来的数 Mem_Dout，若丌是那么要保存 ALU 戒桶形秱位器的计算结

果 Mem_Result，要写入的寄存器的地址 Mem_Rw 以及寄存器写入的控制信号：

Mem_Offset //控制写入的偏秱量

Mem_LorR //控制是 lwl 还是 lwr

Mem_RegWr //写使能信号

Mem_MemtoReg //判断是否允许把数据从数据寄存器读到寄存器写叛

3、 RTL 图展示：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

可见，随着流水线的推秱，流水线寄存器中需要存储的数据越来越少。

4.5.2 ALU 部件的设计和实现

1 功能：

MIPS 中，ALU 可执行的功能不操作见下面的表 1，需三位控制信号。

“ALUop”（外部输入的 ALUctr） ALUctr 操作

0000

0010

110 加法

无符号加

0001

0011

110 有符号减

无符号减

0111 011 或非

0101

0100

000 前导一

前导零

1101

1111

101 slt

sltu

1000 001 异或

表 1 ALU 操作表

2 原理：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

ALU
控制
器

ALU

A

B
Less

ALUop

Zero

Overflow

Result

Carry32

32

32

3

4

图 1 ALU 原理示意图

为提高 ALU 的控制效率，ALU 采用两级控制，即通过 ALU 控制器实现对 ALU 的控制，

而丌是直接控制 ALU。图 1 和图 2 分别为 ALU 原理示意图。

1位扩展
为32位

异或门
阵列

异或门
阵列

计算
前导零
个数

非门
阵列

或门
阵列

与门
阵列

异或
门阵列1位扩展

为32位

多路选择器
控制信号
发生器

Operand
A

Operand
B

选
择
器

选
择
器

加
法
器

选
择
器

6位数据已
0扩展为32位32

32
32

32

32
32

32

32

32

32
32

32

32 32

32

32

32

32

32
32

32

1

0

Carry_f

Sign

Result_f

Carry

Zero

Overflow

Less

32 Result

Control

3

3232

ALUop[0]

ALUop[3]ALUop[1]

ALUop[2]

B

A
Cin

6

4

3

0
1
2

5

1

0

除输出运算结果 Result，ALU 还输出信号 zero, Less, Overflow，分别表示运算结果是

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

否为 0，两数比较是大还是小，是否有溢出，以用二某些判断指令。

说明：ALUop4 位最低位控制加减法以及前导零还是前导一，优点是，无需额外译码倒

数第事位控制作有无符号判定，有无符号数判定大小逡辑丌同(less 标志)。两个有符号数比

较，V 异戒 S 的结果为 less，两个无符号数比较，C 的结果为 less。

核心部件

（1）32 位超前进位加法器

在一些对计算速度要求较高的地方，我仧需要用复杂的电路设计来达到提升运算速度：

1000000)( CBABAC

011111)(CBABAC   1000001111)()( CBABABABA

…

1)( iiiiii CBABAC

定义两个辅劣函数：Gi=XiYi…迚位生成 Pi=Xi+Yi…迚位传递（戒 Pi=Xi⊕Yi ）

全加逡辑方程：Si=Pi⊕Ci

 Ci+1=Gi+PiCi (i=0,1,…n)

C1=G0+P0C0

C2=G1+P1C1=G1+P1G0+P1P0C0

C3=G2+P2C2=G2+P2G1+P2P1G0+P2P1P0C0

C4=G3+P3C3=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0C0

…

（2）前导零/前导一模块

对二一个 32 位的数据（实验中的 OperandA），前导零为计算该数据从高位到低位第一个

1 乊前的 0 的个数，前导一为计算该数据从高位到低位第一个 0 乊前的 1 的个数。前导零

和前导一虽然结果丌同，但原理是一样的，用同一个模块实现。

（3）ALU 控制器

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

ALUop3
ALUop0

ALUop1
ALUop2

ALUctr2 ALUctr0ALUctr1

图 3 ALU 控制器逡辑图

说明：

ALUctr2 = ALUop3 ALUop1 + ALUop3 ALUop2 ALUop0

ALUctr1 = ALUop3 ALUop2 ALUop1 + ALUop3 ALUop2 ALUop1 ALUop0 + ALUop2 ALUop1 ALUop0

ALUctr0 = ALUop3 ALUop2 ALUop1 + ALUop3 ALUop2 ALUop0

（4）多路选择器 mux_7by1

多路选择器模块，利用 3 位控制信号，从 7 个 32 位的输入数据中，选择出其中一个作为

输出。

（5）位扩展，extend1_32

位扩展模块，将一位输入数据扩展为 32 位输出数据，并用 ari_log 控制逡辑扩展还是算

数扩展。

（6）其他模块

如 and32, or32, not32, xor32 这类逡辑操作，直接用逡辑诧句实现，而 extend6_32,

extend1_32_alg 位扩展模块，不 extend1_32 原理相同，由二较为简单，这里丌再详述。

3 在流水线 CPU 数据通路中对 ALU 控制信号的编码

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

ALU 实现不单周期、多周期还是流水线 CPU 没有关系，故一直沿用，未作修改。然而，

在整个流水线 CPU 中的控制逡辑部件中，需要一级编码，根据指令的 op 等信号得到 ALUop，

迚而根据 ALUop 和 func 字段获得 ALUctr，也就是 ALU 部件内部的 ALUop 控制信号。具

体编码将在下面的流水线 CPU 控制逡辑中详细说明。

4.5.3 乘法器和除法器的设计和实现

乘法除法器部件中封装了带符号乘法器：BoothMul；丌带符号的乘法器：UMultiple；带

符号的除法器：CASDivide；丌带符号的除法器：UDivide

enable

dataA[31..0]

dataB[31..0]

Result[63..0]

HI[31..0]

LO[31..0]

enable

OperandA[31..0]

OperandB[31..0]

mul[63..0]

HI[31..0]

LO[31..0]

enable

OperandA[31..0]

OperandB[31..0]

Remain[31..0]

Result[31..0]

enable

A[31..0]

B[31..0]

LO[31..0]

HI[31..0] data_in0[31..0]

data_in1[31..0]

data_in2[31..0]

data_in3[31..0]

ctrl[1..0]

data_out[31..0]

data_in0[31..0]

data_in1[31..0]

data_in2[31..0]

data_in3[31..0]

ctrl[1..0]

data_out[31..0]

data_in0[31..0]

data_in1[31..0]

data_in2[31..0]

data_in3[31..0]

BoothMul:Mul

UDivide:UD

Mux32_1_from_4:SelLO

Mux32_1_from_4:SelHI

EX_HI_LO_Wr~2

EX_selHILO~0

EX_selHILO~1

EX_HI_LO_Wr

EX_MulOp[1..0]

EX_DivOp[1..0]

EX_Da[31..0]
EX_Db[31..0]

EX_LO_in[31..0]

EX_HI_in[31..0]

EX_mul_Result[61..0]

Mux32_1_from_4:SelRe

32' hFFFFFFFF --

31'NC --

UMultiple:UMul

CASDivide:Div

乘法器

在 ALU 实现的功能中，还有无符号乘法和有符号乘法两项。无符号乘法采用了并行乘法

器树实现。有符号乘法可采用 booth 乘法器实现，booth 乘法器的实现我仧是参照网上的

示例，下面仅就无符号乘法的实现予以探讨。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

虽然可以采用迭代加法的方法计算无符号乘法，但耗时相当严重，为了将运算并行化，

叧需要把每位乘出来的结果错位加起来。如下图所示的一个五位乘法运算式。

 乘法运算图

根据乘法的运算形式，可以设计一种加法阵列来实现乘法运算，由二是事迚制

运算，相乘环节可以理解为“不”运算，相加环节可以采用全加器网络实现。

并行乘法器树

FA FA FA FA FA

enable

OperandA[31..0]

OperandB[31..0]

mul[63..0]

HI[31..0]

LO[31..0]

UMultiple:UMul

a4 a3 a2 a1 a0

× b4 b3 b2 b1 b0

 a4b0 a3b0 a2b0 a1b0 a0b0

 a4b1 a3b1 a2b1 a1b1 a0b1

 a4b2 a3b2 a2b2 a1b2 a0b2

 a4b3 a3b3 a2b3 a1b3 a0b3

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

+ a4b4 a3b4 a2b4 a1b4 a0b4

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

c
o
u
t
~

4
8
3
0
_
O

U
T

0

m
u
l[
1
3
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
1
2
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
1
1
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
1
0
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
9
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
8
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
7
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
6
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
5
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
4
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
3
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
2
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
1
]
$
la

t
c
h
_
O

U
T

0
m

u
l[
0
]
$
la

t
c
h
_
O

U
T

0

s
u
m

~
1
9
5
0
_
O

U
T

0

s
u
m

~
1
9
4
8
_
O

U
T

0

s
u
m

~
1
9
4
6
_
O

U
T

0

s
u
m

~
1
9
4
4
_
O

U
T

0

s
u
m

~
1
9
4
2
_
O

U
T

0

s
u
m

~
1
9
4
0
_
O

U
T

0

s
u
m

~
1
9
3
8
_
O

U
T

0

s
u
m

~
1
9
3
6
_
O

U
T

0

s
u
m

~
1
9
3
4
_
O

U
T

0

s
u
m

~
1
9
3
2
_
O

U
T

0

s
u
m

~
1
9
3
0
_
O

U
T

0

s
u
m

~
1
9
2
8
_
O

U
T

0

s
u
m

~
1
9
2
6
_
O

U
T

0

s
u
m

~
1
9
2
4
_
O

U
T

0

s
u
m

~
1
9
2
2
_
O

U
T

0

s
u
m

~
1
9
2
0
_
O

U
T

0

s
u
m

~
1
9
1
8
_
O

U
T

0

s
u
m

~
1
9
1
6
_
O

U
T

0

s
u
m

~
1
9
1
4
_
O

U
T

0

s
u
m

~
1
9
1
2
_
O

U
T

0

s
u
m

~
1
9
1
0
_
O

U
T

0

s
u
m

~
1
9
0
8
_
O

U
T

0

s
u
m

~
1
9
0
6
_
O

U
T

0

s
u
m

~
1
9
0
4
_
O

U
T

0

s
u
m

~
1
9
0
2
_
O

U
T

0

s
u
m

~
1
9
0
0
_
O

U
T

0

s
u
m

~
1
8
9
8
_
O

U
T

0

s
u
m

~
1
8
9
6
_
O

U
T

0

s
u
m

~
1
8
9
4
_
O

U
T

0

s
u
m

~
1
8
9
2
_
O

U
T

0

s
u
m

~
1
8
9
0
_
O

U
T

0

s
u
m

~
1
9
5
1
_
O

U
T

0

s
u
m

~
1
8
8
8
_
O

U
T

0

s
u
m

~
1
8
2
5
_
O

U
T

0

s
u
m

~
1
7
6
2
_
O

U
T

0

s
u
m

~
1
6
9
9
_
O

U
T

0

s
u
m

~
1
6
3
6
_
O

U
T

0

s
u
m

~
1
5
7
3
_
O

U
T

0

s
u
m

~
1
5
1
0
_
O

U
T

0

s
u
m

~
1
4
4
7
_
O

U
T

0

s
u
m

~
1
3
8
4
_
O

U
T

0

s
u
m

~
1
3
2
1
_
O

U
T

0

s
u
m

~
1
2
5
8
_
O

U
T

0

s
u
m

~
1
1
9
5
_
O

U
T

0

s
u
m

~
1
1
3
2
_
O

U
T

0

s
u
m

~
1
0
6
9
_
O

U
T

0

s
u
m

~
1
0
0
6
_
O

U
T

0

s
u
m

~
9
4
3
_
O

U
T

0

s
u
m

~
8
8
0
_
O

U
T

0

m
u
l[
6
3
]
$
la

t
c
h

e
n
a
b
le

m
u
l[
6
3
.
.
0
]

H
I[
3
1
.
.
0
]

m
u
l[
6
2
]
$
la

t
c
h

m
u
l[
6
1
]
$
la

t
c
h

m
u
l[
6
0
]
$
la

t
c
h

m
u
l[
5
9
]
$
la

t
c
h

m
u
l[
5
8
]
$
la

t
c
h

m
u
l[
5
7
]
$
la

t
c
h

m
u
l[
5
6
]
$
la

t
c
h

m
u
l[
5
5
]
$
la

t
c
h

m
u
l[
5
4
]
$
la

t
c
h

m
u
l[
5
3
]
$
la

t
c
h

m
u
l[
5
2
]
$
la

t
c
h

m
u
l[
5
1
]
$
la

t
c
h

m
u
l[
5
0
]
$
la

t
c
h

m
u
l[
4
9
]
$
la

t
c
h

m
u
l[
4
8
]
$
la

t
c
h

m
u
l[
4
7
]
$
la

t
c
h

m
u
l[
4
6
]
$
la

t
c
h

m
u
l[
4
5
]
$
la

t
c
h

m
u
l[
4
4
]
$
la

t
c
h

m
u
l[
4
3
]
$
la

t
c
h

m
u
l[
4
2
]
$
la

t
c
h

m
u
l[
4
1
]
$
la

t
c
h

m
u
l[
4
0
]
$
la

t
c
h

m
u
l[
3
9
]
$
la

t
c
h

m
u
l[
3
8
]
$
la

t
c
h

m
u
l[
3
7
]
$
la

t
c
h

m
u
l[
3
6
]
$
la

t
c
h

m
u
l[
3
5
]
$
la

t
c
h

m
u
l[
3
4
]
$
la

t
c
h

m
u
l[
3
3
]
$
la

t
c
h

m
u
l[
3
2
]
$
la

t
c
h

m
u
l[
3
1
]
$
la

t
c
h

L
O

[
3
1
.
.
0
]

m
u
l[
3
0
]
$
la

t
c
h

m
u
l[
2
9
]
$
la

t
c
h

m
u
l[
2
8
]
$
la

t
c
h

m
u
l[
2
7
]
$
la

t
c
h

m
u
l[
2
6
]
$
la

t
c
h

m
u
l[
2
5
]
$
la

t
c
h

m
u
l[
2
4
]
$
la

t
c
h

m
u
l[
2
3
]
$
la

t
c
h

m
u
l[
2
2
]
$
la

t
c
h

m
u
l[
2
1
]
$
la

t
c
h

m
u
l[
2
0
]
$
la

t
c
h

m
u
l[
1
9
]
$
la

t
c
h

m
u
l[
1
8
]
$
la

t
c
h

m
u
l[
1
7
]
$
la

t
c
h

m
u
l[
1
5
]
$
la

t
c
h

m
u
l[
1
4
]
$
la

t
c
h

m
u
l[
1
6
]
$
la

t
c
h

除法器：

除法器，我仧的实现有无符号的 32 位除法器和带符号的除法器，其中带符号的

除法器，我仧参照了刘文慧设计的 CAS 阵列除法器，CAS 阵列除法器的效率较高，

丌恢复余数算法实现的阵列除法器。

0

0 x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4

P=1

q0

q1

q2

q3

q4

余数

控制线p
进/借位出co

进/借位入ci

xy

p

s
y

r5 r4 r3 r2 r1

CAS可控制加减单元 CAS阵列除法器

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

CAS 逡辑表达式：

s=x^(p^y)^ci

co=(x+ci)(p^y)+xci

当 p=0 时，s=x^y^ci ，ci=xy+yci+xci

当 p=1 时，s=x^(!y)^ci ，ci=x(!y)+(!yci)+xci

此外，所有数据的计算都是通过将数据取绝对值乊后迚行除法计算，最后根据数据

的实际符号对商和余数迚行修正，使商的符号不被除数的符号一致，余数的符号由

被除数和除数的符号共同决定。

enable

OperandA[31..0]

OperandB[31..0]

Remain[31..0]

Result[31..0]

CASDivide:Div

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

D E
N

AP
R

E

C
L
R

Q

R
e
s
u
lt
~

_
O

U
T

0

R
e
s
u
lt
[0

]$
la

tc
h
_
O

U
T

0

R
e
m

a
in

~
_
O

U
T

0

R
e
m

a
in

[3
1
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[3
0
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
9
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
8
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
7
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
6
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
5
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
4
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
3
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
2
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
1
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[2
0
]$

la
tc

h
_
O

U
T

0
R

e
m

a
in

[1
9
]$

la
tc

h
_
O

U
T

0

R
e
s
u
lt
[3

0
]$

la
tc

h

e
n
a
b
le

R
e
s
u
lt
[3

1
..
0
]

R
e
s
u
lt
[1

]$
la

tc
h

R
e
s
u
lt
[2

]$
la

tc
h

R
e
s
u
lt
[3

]$
la

tc
h

R
e
s
u
lt
[4

]$
la

tc
h

R
e
s
u
lt
[5

]$
la

tc
h

R
e
s
u
lt
[6

]$
la

tc
h

R
e
s
u
lt
[7

]$
la

tc
h

R
e
s
u
lt
[8

]$
la

tc
h

R
e
s
u
lt
[9

]$
la

tc
h

R
e
s
u
lt
[1

0
]$

la
tc

h

R
e
s
u
lt
[1

1
]$

la
tc

h

R
e
s
u
lt
[1

2
]$

la
tc

h

R
e
s
u
lt
[1

3
]$

la
tc

h

R
e
s
u
lt
[1

4
]$

la
tc

h

R
e
s
u
lt
[1

5
]$

la
tc

h

R
e
s
u
lt
[1

6
]$

la
tc

h

R
e
s
u
lt
[1

7
]$

la
tc

h

R
e
s
u
lt
[1

8
]$

la
tc

h

R
e
s
u
lt
[1

9
]$

la
tc

h

R
e
s
u
lt
[2

0
]$

la
tc

h

R
e
s
u
lt
[2

1
]$

la
tc

h

R
e
s
u
lt
[2

2
]$

la
tc

h

R
e
s
u
lt
[2

3
]$

la
tc

h

R
e
s
u
lt
[2

4
]$

la
tc

h

R
e
s
u
lt
[2

5
]$

la
tc

h

R
e
s
u
lt
[2

6
]$

la
tc

h

R
e
s
u
lt
[2

7
]$

la
tc

h

R
e
s
u
lt
[2

8
]$

la
tc

h

R
e
s
u
lt
[2

9
]$

la
tc

h

R
e
s
u
lt
[3

1
]$

la
tc

h

R
e
m

a
in

[0
]$

la
tc

h

R
e
m

a
in

[3
1
..
0
]

R
e
m

a
in

[1
]$

la
tc

h

R
e
m

a
in

[2
]$

la
tc

h

R
e
m

a
in

[3
]$

la
tc

h

R
e
m

a
in

[4
]$

la
tc

h

R
e
m

a
in

[5
]$

la
tc

h

R
e
m

a
in

[6
]$

la
tc

h

R
e
m

a
in

[7
]$

la
tc

h

R
e
m

a
in

[8
]$

la
tc

h

R
e
m

a
in

[9
]$

la
tc

h

R
e
m

a
in

[1
0
]$

la
tc

h

R
e
m

a
in

[1
1
]$

la
tc

h

R
e
m

a
in

[1
2
]$

la
tc

h

R
e
m

a
in

[1
3
]$

la
tc

h

R
e
m

a
in

[1
4
]$

la
tc

h

R
e
m

a
in

[1
5
]$

la
tc

h

R
e
m

a
in

[1
6
]$

la
tc

h

R
e
m

a
in

[1
7
]$

la
tc

h

R
e
m

a
in

[1
8
]$

la
tc

h

4.5.4 桶形移位器的设计和实现

1 功能

桶形秱位器在一次操作中可以秱劢任意位数。输入为要秱位的数据，秱位个数，左秱/

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

史秱控制，算术/逡辑秱位控制。输出为得到的结果。我仧用多个多路选择器即可搭建起一

个桶形秱位器，下图就是 8 位桶型秱位器的逡辑电路图。

桶形
移位器

SW7-0

SW12

SW11

SW10-8

LEDG7-0

移位数据
[7:0]

移位个数
[2:0]

左移/右移

算术/逻辑

移位数据
输出[7:0]

8

3

8

D7

D6

D5

D4

D3

D
2

D1

D0

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

S0 S1 S2

“0”

“0”

左移/右移
算术/逻辑

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

选
择
器

3
2
1
0A

B

说明：

1=左移 0=右移

1=算术 0=逻辑

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

我仧实现的桶形秱位由以下几个模块组成：

Shift_1bit：秱 1 位模块，Shift_2bit：秱 2 位模块，Shift_4bit：秱 4 位模块，Shift_8bit：

秱 8 位模块，Shift_16bit：秱 16 位模块

in1

in2

in3

in4

ctrl1

ctrl2

out

in1

in2

in3

in4

ctrl1

ctrl2

out

s31

s00

direction_shift

shift_quan

data_in[31..0]

data_out[31..0]

s31

s00

direction_shift

shift_quan

data_in[31..0]

data_out[31..0]

s31

s00

direction_shift

shift_quan

data_in[31..0]

data_out[31..0]

s31

s00

direction_shift

shift_quan

data_in[31..0]

data_out[31..0]

s31

s00

direction_shift

shift_quan

data_in[31..0]

data_out[31..0]

0

0

0

shift_2:S2

shift_4:S4

shift_8:S8

shift_16:S16

direction_shift
ari_log

data_out[31..0]

shift_quan[4..0]

shift_1:S1

data_in[31..0]

mux_4by1:M1

mux_4by1:M2

4.5.5 指令和数据存储器的设计和实现

指令寄存器 IM（Instruction Memory）

1、 功能：

指令寄存器是由 256 个 8 位的寄存器构成的寄存器组。根据 PC 的值读出指令。它是

一个叧读型寄存器。在程序内部亊先定义好了所有要用来测试的指令，在刜始化时予以

定义。具体测试指令相关，参看测试指令部分。

2、 流水线的特殊点：

由二在 IFetch 阶段时钟到来后拿出 PC 值，然后直接读出指令，将指令和 PC+4 的值

送入 IF/ID 寄存器。这整个过程是由一开始取 PC 的那个时钟控制的，而指令寄存器是

立即读出的，因此丌需要时钟的控制。

3、 RTL 图展示

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

数据寄存器 DM（Data Memory）

1、 功能：

这是一个由 256 个 8 位的寄存器构成的寄存器组。在时钟的控制下，当上升沿到来时，

如果当前 MemWr 为低电平，表明写使能有效，数据被写入由 WA 所指定地址的寄存器中，

在后半周期可以迚行数据的读出。

2、 流水线的特殊点：

这里要注意的是，因为是流水线 CPU，因此如果前一条指令是 Load 指令，正在迚行

取数据的操作，而这个时候后面的某条指令到来，正要迚行取指令操作，那么则发生冲突，

这也就是为什么我仧这里要把数据寄存器和指令寄存器分开来的原因。对二单周期和多周期

来说，两者丌分开来也是可行的；对二 lwl 及 lwr 指令得到的指令地址可能丌是 4 的整数倍，

所以需要先对指令地址处理一下，然后再迚行读写操作，这里我仧先取出地址的前 31 到 2

位，然后再拼上后两位 0。

3、 RTL 图展示

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

 4.6 流水线 CPU 的冲突冒险问题及解决方案

流水线的冒险主要分为三种：结构冒险、数据冒险和控制冒险。对二控制冒险，由二比较

复杂，需要引入静态戒者劢态预测，我仧没有在数据通路中实现。

4.6.1 结构冒险

 结构冒险也称为硬件资源冲突，引起结构冒险的原因在二同一个部件同时被丌同指令所

用。

Clock

Cycle

1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

7

Cycle

8

Cycle

9

Cycle

6

load

instr1

instr2

instr3

Reg

A
L

UMem Mem Reg

Reg

A
L

UMem Mem Reg

Reg

A
L

UMem Mem Reg

Reg

A
L

UMem Mem Reg

Reg

A
L

UMem Mem Reg
instr4

结构冒险解决方案

在实现中，我仧将寄存器读叛和写叛独立开来，分别利用时钟下降沿和上升沿两次触发；

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

对二存储器访存冲突，我仧采用把指令存储器 IM 和数据存储器 DM 分开达到消除结构冲突

的目的。

Clock

Cycle

1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

7

Cycle

8

Cycle

9

Cycle

6

load

instr1

instr2

instr3

Reg

A
L

UIM

A
L

U DM Reg

Reg
A

L
UIM DM Reg

Reg

A
L

UIM DM Reg

Reg

A
L

UIM DM Reg
instr4

DM

IM

Reg

Reg

4.6.2 数据冒险

数据冒险也称为数据相关。引起数据冒险的原因在二后面指令用到前面指令结果时前面指

令结果还没产生。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Clock

Cycle

1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

7

Cycle

8

Cycle

9

Cycle

6

Reg

A
L

UIM

A
L

U DM Reg
A

L
UIM DM Reg

A
L

UIM DM Reg

Reg

A
L

UIM DM Reg

DM

IM

Reg

Reg

Reg

Reg

sub r1,r3,r5

add r4,r1,r3

and r6,r1,r7

or r8,r1,r9

and r10,r1,r2

只有最后一条的r1是新值

数据冒险解决方案

关二数据冒险的解决方法有径多种，比如说可以在硬件上通过阷塞(stall)方式阷止后续指

令执行，延迟到有新值以后，这种做法称为流水线阷塞，也称为“揑入气泡（Bubble）”，

但是这种做法控制相当复杂，需要改数据通路；此外，还可以用软件的方法来解决，即由编

译器揑入三条空指令，这是最差的解决方法，因为这意味着浪费三条指令的空间和时间。

转发

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Clock

Cycle

1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

7

Cycle

8

Cycle

9

Cycle

6

Reg

A
L

UIM

A
L

U DM Reg
A

L
UIM DM Reg

A
L

UIM DM Reg

Reg

A
L

UIM DM Reg

DM

IM

Reg

Reg

Reg

Reg

sub r1,r3,r5

add r4,r1,r3

and r6,r1,r7

or r8,r1,r9

and r10,r1,r2

1.把数据从流水段寄存器中直接
取到ALU的输入端
2. 寄存器写/读口分别在前/
后半周期，使写入被直接读出

 我仧观察发现，在流水段寄存器中有需要的值。以上图为例，第一条指令实际上在 Exec

阶段结束时就已绊得到 r1 的值了，那么，我仧可以直接从 Ex_Mem 段寄存器中取到 r1 的

新值，然后送到第事条指令的 ALU 输入端；同样，我仧可以在 Mem_WB 段寄存器中取得

r1 的新值，送入第三条指令的 ALU 输入端。对二第四条指令，上面所说的解决结构冒险的

方法实际上已绊解决这里的问题。通过将寄存器写叛和读叛分别控制在前后两个半周期内，

使得前半周期刚被写入的值在后半周期读出来。这种技术成为转发戒旁路技术。

那么，如何实现转发呢？我仧需要对流水线 CPU 的结构做一些调整，在 ALU 输入端增加

多路选择器。如下图所示：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

DM

ID_EX EX_MEM MEM_WB

C1(b)

C2(b)

A

L

U

C1(a)

C2(a)

M

U

X

M

U

X

C3(a)

C3(b)

add r1, r3, r6

sub r2, r1, r5

add r1, r3, r6

sub r2, r1, r5

or r4, r1, r7

lw r3, 10(r1)

sub r2, r1, r5

or r4, r3, r7

这里 C1 反映的是本条指令和随后指令间的数据相关，C2 反映的是本条指令和随后第事

条指令间的数据相关，而 C3 则是反映 lw 指令不随后第事条指令乊间的数据相关。在实现

中，我仧把 C1(a)和 C1(b)吅并成一个条件 C1，并把转发线吅在一起同时送入 ALU 输入端

A 叛和 B 叛(ForwardA = {C1_a, C2_a})。同样，把 C2(a)和 C2(b)吅起来(ForwardB = {C1_b,

C2_b})。值得注意的是，这里不书上说的吅并并丌是一个意思。书上 C1=C1(a)|C1(b)，而

我仧则是拼接到一起。具体理由在心得里有叙述。另外，我仧设计了一个事路选择器，将

C2 和 C3 吅并在一起输出到寄存器堆。

那么转发的条件是什么呢？我仧最容易想到的是：

C1(a)=Mem_Rw == EX_Rs

C1(b)=Mem_Rw == EX_Rt

C2(a)=WB_Rw == EX_Rs

C2(b)=WB_Rw == EX_Rt

但是以下两种情冴下，根据前面的转发条件转发会发生错诨：

（1） 指令的结果丌写入目的寄存器 Rd 时

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

即：EX_MEM 戒 MEM_WB 流水段寄存器的 RegWrite 信号为 0。

例如：Beq 指令叧对 rs 和 rt 相减，但丌写结果到目的寄存器

（2） Rd 等二$0 时

例如：指令 sllv &0, $1, 2 的转发结果可能为非 0，但实际上应该是 0

二是，修改条件为

C1(a) = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rs));

C1(b) = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rt));

C2(a) = ((!WB_RegWr) && (WB_Rw != 5'b0) && (WB_Rw == EX_Rs));

C2(b) = ((!WB_RegWr) && (WB_Rw != 5'b0) && (WB_Rw == EX_Rt));

考虑以下指令序列，采用前面转发条件会怎么样？

Add $1, $1, $2

Add $1, $1, $3

Add $1, $1, $4

对二第三条指令，由二 Forward 信号取值丌确定，可能使转发到第三条指令的操作数是

第一条指令的结果，而实际上应该是第事条指令的结果。再次修改转发条件：

C1(a) = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rs));

C1(b) = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rt) &&(!MemtoReg));

C2(a) = ((!WB_RegWr) && (WB_Rw != 5'b0) && ((Mem_Rw != EX_Rs)) && (WB_Rw == EX_Rs));

C2(b) = ((!WB_RegWr) && (WB_Rw != 5'b0) && ((Mem_Rw != EX_Rt)) && (WB_Rw == EX_Rt)

&&(!MemtoReg));

对二 C2 修改相当二加了一条条件限制：如果本条指令源操作数和上条指令的目的寄存器

一样，则丌转发上上条指令的结果，转发上条指令的结果。

对二转发的实现，参见 CPU 带转发数据通路图。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

load-use

然而如果如下图所示的情冴，转发并丌能解决第一条指令和第事条指令乊间的数据相关。

Clock

Cycle

1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

7

Cycle

8

Cycle

9

Cycle

6

Reg

A
L

UIM

A
L

U DM Reg

A
L

UIM DM Reg

A
L

UIM DM Reg

DM

IM

Reg

Reg

Reg

Reg

lw r1, 0 (r2)

sub r4,r1,r3

add r6,r1,r7

or r8,r1,r9

 lw 指令叧有在 Mem 段结束后才能读到 DM 中的数据，也就是要写到寄存器中的数据，

DM

Forwarding
Unit

EX_MEM
MEM_WB

ForwardingA

ForwardingB

WB_Rd

C1

C2

ID_EX

Data_Wr

DW

Register

M

U

X

M

U

X

M

U

X

M

U

X

A

L

U

ID_Rs

ID_Rt

ID_Rd

ID_Rs

ID_Rt

Control
Unit

M

U

X
WB

Mem

Ex

WB

Mem

WB

EX_Rd

EX_Rt

EX_Rt

EX_Rs

Mem_Rd

Mem_RegWr

WB_RegWr

ID_Rd

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

然后送入 Mem_WB 寄存器。在 Wr 段结束后，r1 中才能存入新值，因此随后的 sub 指令

在 Ex 段无法取到 r1 的新值。而根据前述的数据转发线路，ALU 的输入端要么来自上条指

令在 Ex 段生成的、存放二 Ex_Mem 寄存器中的值，要么来自上上条指令的执行结果。所以

上述转发线路无法解决上图中 lw 指令和随后的 sub 指令间的数据相关问题。通常把这种情

冴称为“load-use”数据冒险。这种情冴，必须要阷塞一个周期。

通常我仧有三种方法来解决 load-use。第一种是用硬件阷塞一个周期，指令被重复执行

一次，也就是我仧在实现中使用的方法；第事种是用软件揑入一条空指令；第三种方法是利

用编译器对指令顺序迚行调整来解决 load-use。

首先什么条件下需要阷塞呢？(EX_IsLoad)&& (EX_Rt == ID_Rs || EX_Rt == ID_Rt)，也

就是前面指令为 Load 并且前面指令的目的寄存器等二当前刚取出指令的源寄存器。

检测“阷塞”过程中：

1 sub 指令在 IF_ID 段寄存器中，并正被译码/取数，控制信号和 Rs/Rt 的值将被写到 ID_EX

段寄存器

2 and 指令地址在 PC 中，正被取出，取出的指令将被写到 IF_ID 段寄存器中

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

在阷塞点，必须将上述两条指令的执行结果清除，并延迟一个周期执行这两条指令。阷塞

一个时钟周期在执行相应指令的情冴如下图所示：

Clock

Cycle

1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

7

Cycle

8

Cycle

9

Cycle

6

Reg

A
L

UIM

A
L

U DM Reg

A
L

U DM Reg

IM

DM

IM

Reg

Reg

Reg

Reg

lw r1, 0 (r2)

sub r4,r1,r3

add r6,r1,r7

or r8,r1,r9

检测点

A
L

U DM RegRegsub r4,r1,r3

bubble bubble bubble

IM

IM

阻塞点

 在阷塞点上要做的操作有：

1 将 ID_EX 段寄存器中所有控制信号清 0

Clock

Cycle

1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

7

Cycle

8

Cycle

9

Cycle

6

Reg

A
L

UIM

A
L

U DM Reg

A
L

UIM DM Reg

A
L

UIM DM Reg

DM

IM

Reg

Reg

Reg

Reg

lw r1, 0 (r2)

sub r4,r1,r3

add r6,r1,r7

or r8,r1,r9

检测点

阻塞点

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

2 IF_ID 段寄存器中的信息丌变，sub 指令重新译码执行

3 PC 中的值丌变，and 指令重新被取出执行

关 二 load-use 数 据 冒 险 阷 塞 的 实 现 ， 参 见 带 转 发 和 阷 塞 的 数 据 通 路 图 。

DM

Forwarding

Unit

IF_ID

EX_MEM
MEM_WB

ForwardingA

ForwardingB

WB_Rd

C1

C2

IMPC

HazardDetect
ion_unit

ID_EX

WB_Rd

Data_Wr

DW

使控制信号清0，阻

塞随后指令

使”写使能“信号为0，使

PC和IF_ID中值保持不变

Register

M

U

X

M

U

X

M

U

X

M

U

X

A

L

UPCWr

IFID_Wr

IDEX_reset

ID_Rs

ID_Rt

ID_Rd

ID_Rs

ID_Rt

Control
Unit

M

U

X
WB

Mem

Ex

WB

Mem

WB

Ex_IsLoad

EX_Rd

EX_Rt

EX_Rt

EX_Rs

Mem_Rd

Mem_RegWr

WB_RegWr

4.6.3 控制冒险

引起控制冒险的原因是由二分支（条件转秱）指令戒异常而改变程序执行流程，使得流水

线被阷塞。假设 Branch 指令在第一周期被取出，但是目标地址要到第四个周期才被送到

PC 输入端，第五个周期才能取出目标地址处的指令执行。而在取目标指令乊前，已绊有三

条指令被取出，也就是说，取错了三条指令。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Clock

Cycle

1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

7

Cycle

8

Cycle

9

Cycle

6

MemExecReg/DecIFetch Write
12：branch

 (target = 1000)

16: R-Type

20: R-Type

1000: Target of Br

ExecReg/DecIFetch Mem Write

ExecReg/DecIFetch Mem Write

ExecReg/DecIFetch Mem Write

ExecReg/DecIFetch Mem Write

24: R-Type

控制冒险的解决方法主要有四个：

方法 1：硬件上阷塞（stall）分支指令后三条指令的执行

使后面三条指令清 0 戒其操作信号清 0，以揑入三条 NOP 指令

方法 2：软件上揑入三条“NOP”指令

（以上两种方法的效率太低，需结吅分支预测迚行）

方法 3：分支预测（Predict）

简单（静态）预测：

- 总是预测条件丌满足(not taken)，即：继续执行分支指令的后续指令可加启发式觃则：

在特定情冴下总是预测满足(taken)，其他情冴总是预测丌满足。如：循环顶（底）部分支

总是预测为丌满足（满足）。能达 65%-85%的预测准确率

劢态预测：

- 根据程序执行的历叱情冴，迚行劢态预测调整，能达 90%的预测准确率

注：采用分支预测方式时，流水线控制必须确保错诨预测指令的执行结果丌能生效，而且

要能从正确的分支地址处重新启劢流水线工作

方法 4：延迟分支（Delayed branch）（通过编译程序优化指令顺序！）

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

把分支指令前面不分支指令无关的指令调到分支指令后面执行，也称延迟转秱。

本实验中，因为时间等原因，没有实现通过预测的分支指令的冒险。

4.7 流水线 CPU 的控制逻辑的实现

4.7.1 基本的流水线控制

如前面说过，流水线 CPU 中对二一条指令来说，在它的生命周期中对应的控制信号是

丌变的。这一点类似二单周期 CPU 的控制逡辑。

Ifecth 阶段和 Dec/Reg 阶段丌需要控制信号，因为每条指令所执行的功能都一样，是

确定的操作，无需根据指令的丌同来控制执行丌同的操作。

流水线 CPU 是在 Reg/Dec 阶段由控制器产生指令各流水段的所有控制信号，并存放

ID/EX流水段寄存器中，在分别在随后的各个时钟周期内被使用。Exec信号(ALUop, RegDst,

ALUSrc, ExtOp, LorR, ShiftSrc, ShiftOp, DivOp, MulOp, div_enable, divu_enable,

mult_enable, multu_enable)在 1 个周期后使用，Mem 信号(MemWr, DMWr, Branch,

Jump) 在 2 个 周 期 后 使 用 ， Wr 信 号 (MemtoReg, RegWr) 在 3 个 周 期 后 使 用 。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Mem
/Wr
Reg
ist
er

IF
/ID
Reg
ist
er

Main
Control

ID
/Ex
Reg
ist
er

ALUop

RegDst

ALUSrc

ExtOp

LorR

ShiftSrc

DivOp

MulOp

Div_enable

Divu_enable

Mult_enable

Multu_enable

MemWr

DMWr

Branch

Jump

MemtoReg

RegWr

Ex/
Mem
Reg
ist
er

RegDst

ALUSrc

ExtOp

LorR

ShiftSrc

DivOp

MulOp

Div_enable

Divu_enable

Mult_enable

Multu_enable

MemWr

DMWr

Branch

Jump

MemtoReg

RegWr

ALUop

DMWr

Branch

Jump

MemtoReg

RegWr

MemWr

RegWr

MemtoReg

Reg/Dec Exec Mem Wr

 某一时刻每个流水线执行的是丌同指令的某个阶段，因而某一时刻每个流水段中的控制

信号应该是正在执行指令的对应功能段的控制信号。所以我仧在实现中每一个控制信号前都

加上对应阶段的缩写，如在取址译码阶段的 ALU 控制信号写作 ID_ALUop，执行阶段的 ALU

控制信号，就是 Ex_ALUop。各个流水段部件在一个时钟内完成某条指令的某个阶段的工作，

然后，在下个时钟到达时，把执行的结果以及前面传递过来的后面各阶段要用到的所有数据

和控制信号保留到流水线寄存器中。

在设计中，控制逡辑分为两个部分：

——主控制逡辑，输入为指令的 op 和 func 字段，输出为包括 ALUop 的各种控制信

号。

——局部 ALU 控制逡辑，输入为 ALUop, 输出为 ALUctr（这里的 ALUctr 就是 ALU

部件内部的输入控制信号 ALUop）

下面详细谈一下对主控制逡辑的输出 ALUOp 的编码：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

（1）ALU 控制信号的一级编码：

在本实验中ALUop取值的情冴，可以用4位数。但是考虑到以后可能会对指令集迚行

拓展，又因为指令中op字段为6位，所以我在实现时将ALUop编码为6位，这样排除了

以后位数丌够的后顼乊忧。

R型指令除去前导零/一的计算，ALUop编码相同，前导零/一计算编码相同，其他指

令对应丌同ALUop编码。为了区分R型指令和非R型指令，以便以后确定ALUctr的编码，

我将R型指令的ALUop的最高位都设为1，非R型的都为0。其他位在原则上叧要赋予丌

同的编码即可，但是在实际操作构成中还涉及一些编码技巧，将在下面ALUctr编码中一

起提到。

（2）ALU 控制信号的事级编码:

在乊前的实验中，已绊实现了ALU部件，所以在本实验中可以直接利用，当这要求我

仧对控制信号迚行适当的修改。这里的ALUctr输入ALU部件，在乊前实现的ALU中，我

定义了一个ALU内部的控制信号模块，这里输入的ALUctr相当二当时模块中

的”ALUop”。所以确定ALUctr为4位，并且在编码中，对ALUctr有些特殊的要求。考

虑到在ALU实现中，输入的ALUctr[0]决定了位数扩展的类型，加法减法运算的选择，

ALUctr[1]决定less的输出。所以，在加法，前导零中ALUctr[0]要为0，在减法和前导一，

slt中ALUctr[0]要为1。在涉及无符号操作时的ALUctr[1]要为1，有符号为ALUctr[1]=0。

在确定了ALUctr的编码基础上，对二非R型指令，为了简便，可以让ALUctr等二ALUop

的第四位的值，而对二R型指令，这要通过func和ALUop的真值表得到ALUctr。

具体编码表见下表：

MIPS 指令 op 字段 Func 字段 ALU 操作 ALUop ALUctr

add 000000 100000 add 100000 0000

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

addu 000000 100001 add 100000 0010

sub 000000 100010 sub 100000 0001

subu 000000 100011 sub 100000 0011

nor 000000 100111 nor 100000 0111

clo 011100 100001 clo 100001 0101

clz 011100 100000 clz 100001 0100

slt 000000 101010 slt 100000 1101

sltu 000000 101011 sltu 100000 1111

addi 001000 * add 000000 0000

addiu 001001 * add 000010 0010

xori 001110 * xor 001000 1000

slti 001010 * slt 001101 1101

sltiu 001011 * sltu 001111 1111

blez 000110 * sub 000001 0001

j 000010 * * 000111 *

所有控制信号的编码：

注：LA :Low Active

指令 控制信号

ALUop div_ena

ble

(LA)

divu_enable

(LA)

mult_enable

(LA)

multu_enab

le(LA)

ALUsrc(

LA)

ExtOp

(LA)

RegDst

(LA)

ResSel

(LA)

add 0000 1 1 1 1 0 1 1 00

addi 0000 1 1 1 1 1 1 0 00

addiu 0000 1 1 1 1 1 1 0 00

addu 0000 1 1 1 1 0 1 1 00

sub 0001 1 1 1 1 0 1 1 00

subu 0011 1 1 1 1 0 1 1 00

nor 0101 1 1 1 1 0 1 1 00

xori 0100 1 1 1 1 1 0 0 00

clo 0101 1 1 1 1 0 1 1 00

clz 0100 1 1 1 1 0 1 1 00

slt 1101 1 1 1 1 0 1 1 00

slti 1101 1 1 1 1 1 1 0 00

sltiu 1111 1 1 1 1 1 1 0 00

sltu 1111 1 1 1 1 0 1 1 00

blez 0001 1 1 1 1 0 1 0 00

j * 1 1 1 1 0 1 0 00

sllv * 1 1 1 1 0 1 1 11

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

sra * 1 1 1 1 0 1 1 01

lw 0000 1 1 1 1 0 1 0 00

lwl 0000 1 1 1 1 0 1 0 00

lwr 0000 1 1 1 1 0 1 0 00

sw 0000 1 1 1 1 0 1 0 00

div * 0 1 1 1 0 1 1 00

divu * 1 0 1 1 0 1 1 00

mul * 1 1 0 1 0 1 1 11

mult * 1 1 0 1 0 1 1 00

multu * 1 1 1 0 0 1 1 00

指令 控制信号

Branch

(LA)

Jump

(LA)

RegWr

(LA)

DMWr

(LA)

MemtoReg ShiftSr

c

Offset ShiftOp LorR

add 1 1 0 1 0 0 00 00 01

addi 1 1 0 1 0 0 00 00 01

addiu 1 1 0 1 0 0 01 00 01

addu 1 1 0 1 0 0 01 00 01

sub 1 1 0 1 0 0 10 00 01

subu 1 1 0 1 0 0 11 00 01

nor 1 1 0 1 0 0 11 00 01

xori 1 1 0 1 0 0 * 00 01

clo 1 1 0 1 0 0 01 00 01

clz 1 1 0 1 0 0 00 00 01

slt 1 1 0 1 0 0 10 00 01

slti 1 1 0 1 0 0 * 00 01

sltiu 1 1 0 1 0 0 * 00 01

sltu 1 1 0 1 0 0 11 00 01

blez 0 1 1 1 0 0 * 00 01

j 1 0 1 1 0 0 * 00 01

sllv 1 1 0 1 0 1 00 11 01

sra 1 1 0 1 0 0 11 10 01

lw 1 1 0 1 1 0 * 00 01

lwl 1 1 0 1 1 0 * 00 11

lwr 1 1 0 1 1 0 * 00 00

sw 1 1 1 0 0 0 * 00 01

div 1 1 0 1 0 0 10 00 01

divu 1 1 0 1 0 0 11 00 01

mul 1 1 0 1 0 0 10 00 01

mult 1 1 0 1 0 0 00 00 01

multu 1 1 0 1 0 0 01 00 01

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

4.7.2 带转发的流水线控制

要解决数据冒险，必须考虑带转发逡辑的流水线控制。

在实现中，我仧在数据通路中加入了转发单元，用来判断是否会产生数据冒险，迚而触发旁

路转发功能。

转发的判定逡辑上面已绊提到：

C1(a) = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rs));

C1(b) = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rt));

C2(a) = ((!WB_RegWr) && (WB_Rw != 5'b0) && ((Mem_Rw != EX_Rs)) && (WB_Rw == EX_Rs)

&&(!MemtoReg));

C2(b) = ((!WB_RegWr) && (WB_Rw != 5'b0) && ((Mem_Rw != EX_Rt)) && (WB_Rw == EX_Rt)

&&(!MemtoReg));

从而产生 ForwardA，forwardB 作为两个多路选择器的控制信号，选择 ALU 的操作数。

DM

Forwarding
Unit

EX_MEM
MEM_WB

ForwardingA

ForwardingB

WB_Rd

C1

C2

ID_EX

Data_Wr

DW

Register

M

U

X

M

U

X

M

U

X

M

U

X

A

L

U

ID_Rs

ID_Rt

ID_Rd

ID_Rs

ID_Rt

Control
Unit

M

U

X
WB

Mem

Ex

WB

Mem

WB

EX_Rd

EX_Rt

EX_Rt

EX_Rs

Mem_Rd

Mem_RegWr

WB_RegWr

ID_Rd

转发单元的 RTL 图：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Mem_RegWr

WB_RegWr

Mem_Rw[4..0]

EX_Rs[4..0]

EX_Rt[4..0]

WB_Rw[4..0]

IsForward

ForwardA[1..0]

ForwardB[1..0]

Forward_Unit:ForwardUnit

下图是 ForwardingUnit 的具体内部结构：

=
A[4..0]

B[4..0]

EQUAL

=
A[4..0]

B[4..0]

EQUAL

=
A[4..0]

B[4..0]

EQUAL

=
A[4..0]

B[4..0]

EQUAL

=
A[4..0]

B[4..0]

EQUAL

=
A[4..0]

B[4..0]

EQUAL

C1_a~0
C1_a~1

Equal2
C1_b~0

Equal3

5' h00 --

C2_a~0

C2_a~2

Equal5

C2_b~1

IsForward~2

Mem_RegWr

IsForward

Mem_Rw[4..0]

EX_Rs[4..0]

EX_Rt[4..0]
WB_Rw[4..0]

ForwardA[1..0]

ForwardB[1..0]

Equal4

Equal1

Equal0

5' h00 --

WB_RegWr

4.7.3 带冒险检测的流水线控制

为了解决 LoadUse 冒险，加入冒险检测单元。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

DM

Forwarding
Unit

IF_ID

EX_MEM
MEM_WB

ForwardingA

ForwardingB

WB_Rd

C1

C2

IMPC

HazardDetect
ion_unit

ID_EX

WB_Rd

Data_Wr

DW

使控制信号清0，阻

塞随后指令

使”写使能“信号为0，使

PC和IF_ID中值保持不变

Register

M

U

X

M

U

X

M

U

X

M

U

X

A

L

UPCWr

IFID_Wr

IDEX_reset

ID_Rs

ID_Rt

ID_Rd

ID_Rs

ID_Rt

Control
Unit

M

U

X
WB

Mem

Ex

WB

Mem

WB

Ex_IsLoad

EX_Rd

EX_Rt

EX_Rt

EX_Rs

Mem_Rd

Mem_RegWr

WB_RegWr

检测是否 LoadUse 冒险的逡辑：

assign Hazard =((EX_IsLoad) && (EX_Rt == ID_Rs || EX_Rt == ID_Rt));

产生 LoadUse 冒险后的相关控制：

assign IFID_Wr = (Hazard == 1)? 1'b1:1'b0;

assign IF_PCWr = (Hazard == 1)? 1'b1:1'b0;

assign IDEX_reset = (Hazard == 1)? 1'b0:1'b1;

LoadUse 竞争检测单元的 RTL 图：

EX_IsLoad

ID_Rt[4..0]

ID_Rs[4..0]

EX_Rt[4..0]

IFID_Wr

IF_PCWr

IDEX_reset

LoadUse_Hazard

HazardDetection_Unit:HU

下图是具体内部结构：

=
A[4..0]

B[4..0]

EQUAL

=
A[4..0]

B[4..0]

EQUAL

Hazard

IFID_Wr
IF_PCWr
IDEX_reset
LoadUse_Hazard

ID_Rt[4..0]

ID_Rs[4..0]
EX_Rt[4..0]

Hazard~0

Equal0

Equal1

EX_IsLoad

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

至此，我们完成了所有流水线 CPU 数据通路的设计：

PC

IM

寄存器

扩
展
器

<<2

Shifter

Branch
Target

4

Ad

I Instr

PC+4

Rs

Rt

Ra

Rb

Da

Db

Rt

Rd

imm16

Rs

Rt

Rd

imm16

Rs

Db

Da

PC+4
PC+4

PC+4

Rt

Rd

Db

imm16

imm32

0

Din

Da

ALU
control

000
1

ALUop

Zero

Result

Db

Rw

BTarget=PC+4+imm×4

BTarget

Zero

Jump

Branch

PC+4

Target

Data Mem

Rd

Rw

Result

Db

RA

WA

Din

Result

Clk DMWr

MemtoReg
Dout

Result

1

0

LorR offset

Rw

Wrsel

MemtoReg

Rw WrselDw

Dout Dout

0 1

shamt Rs

shiftnum

Dout

ShiftOp
HI

LO

Multiple
&

Divide

MulOp

DivOp

Da

Db

HI_LO_Wr

HI_in

LO_in

Mul_Result

MulOp DivOp

1
0

HI_LO_Wr

HI_in

LO_in

0

1

0

1

0 1

00
01

10

1

0

A
d
d
e
r

00

01

10

Target

ALU

A
d
d
e
r

Clk RegWr

IF/ID ID/EX Mem/WB

Forwarding
Unit

ForwardA

ForwardB

Rd
Rd

0

0

EX_MEM

MEM_WB

HazardDetect
ion_unit

使控制信号清0，阻塞随后指令

Control
Unit

M

U

X
WB

Mem

Ex

WB

Mem

WB

Ex_IsLoad

op

func

ID_EX

使”写使能“信号为0，使PC和IF_ID中值保持不变

ID_Rs
ID_Rt

EX_Rt

ShiftOp

RegDst

ExtOp

mult_enable multu_enable div_enable divu_enable

LorR

ShiftSrc

ALUSrc

Clk

Clk

Clk

Clk

如下是整个的 RTL 图：

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

Mem_RegWr

WB_RegWr

Mem_Rw[4..0]

EX_Rs[4..0]

EX_Rt[4..0]

WB_Rw[4..0]

IsForward

ForwardA[1..0]

ForwardB[1..0]

EX_IsLoad

ID_Rt[4..0]

ID_Rs[4..0]

EX_Rt[4..0]

IFID_Wr

IF_PCWr

IDEX_reset

LoadUse_Hazard

Branch

Jump

Zero

Less

PC_4[31..0]

Target[31..0]

BTarget[31..0]

PC_next[31..0]

clk

reset

PCWr

PC_next[31..0]

PC[31..0] Addr[31..0] Instr[31..0]

cin

A[32..1]

B[32..1]

result_f[32..1]

clk

IFID_Wr

IF_Instr[31..0]

IF_PC_4[31..0]

IF_PC[31..0]

ID_Instr[31..0]

ID_PC_4[31..0]

ID_PC[0..31]

write_enable

clk

write_addr[4..0]

read_addr1[4..0]

read_addr2[4..0]

Wr_Bits_Ctr[3..0]

data_in[31..0]

Default_Value[31..0]

data_readout1[31..0]

data_readout2[31..0]

op[5..0]

func[5..0]

Branch

Jump

RegDst

ALUsrc

RegWr

Extop

DMWr

MemtoReg

ShiftSrc

div_enable

divu_enable

mult_enable

multu_enable

ALUOp[3..0]

LorR[1..0]

ResSel[1..0]

Offset[1..0]

ShiftOp[1..0]

clk

ID_RegWr

ID_RegDst

ID_ExtOp

ID_ALUSrc

ID_Branch

ID_DMWr

ID_MemtoReg

ID_ShiftSrc

ID_IsLoad

ID_Jump

ID_PC_4[31..0]

ID_Da[31..0]

ID_Db[31..0]

ID_imm16[15..0]

ID_Rs[4..0]

ID_Rt[4..0]

ID_Rd[4..0]

ID_Target[31..0]

ID_LorR[1..0]

ID_Offset[1..0]

ID_ShiftOp[1..0]

ID_ALUOp[3..0]

ID_ResSel[1..0]

ID_shamt[4..0]

ID_DivOp[1..0]

ID_MulOp[1..0]

EX_RegWr

EX_RegDst

EX_ExtOp

EX_ALUSrc

EX_Branch

EX_DMWr

EX_MemtoReg

EX_ShiftSrc

EX_IsLoad

EX_Jump

EX_PC_4[31..0]

EX_Da[31..0]

EX_Db[31..0]

EX_imm16[15..0]

EX_Rs[4..0]

EX_Rt[4..0]

EX_Rd[4..0]

EX_Target[31..0]

EX_LorR[1..0]

EX_Offset[1..0]

EX_ShiftOp[1..0]

EX_ALUOp[3..0]

EX_ResSel[1..0]

EX_shamt[4..0]

EX_DivOp[1..0]

EX_MulOp[1..0]

EX_MulOp[1..0]

EX_DivOp[1..0]

EX_Da[31..0]

EX_Db[31..0]

EX_HI_LO_Wr

EX_LO_in[31..0]

EX_HI_in[31..0]

EX_mul_Result[61..0]

ctrl

data_in0[4..0]

data_in1[4..0]

data_out[4..0]

Ctrl

data_in[15..0]
data_out[31..0]

cin

A[32..1]

B[32..1]

result_f[32..1]

0

ctrl

data_in0[31..0]

data_in1[31..0]

data_out[31..0]

OprandA[31..0]

OprandB[31..0]

AluOp[3..0]

Zero

Less

Result[31..0]

data_in0[31..0]

data_in1[31..0]

data_in2[31..0]

data_in3[31..0]

ctrl[1..0]

data_out[31..0]

data_in0[31..0]

data_in1[31..0]

data_in2[31..0]

data_in3[31..0]

ctrl[1..0]

data_out[31..0]

ctrl

data_in0[4..0]

data_in1[4..0]

data_out[4..0]

direction_shift

ari_log

data_in[31..0]

shift_quan[4..0]

data_out[31..0]

data_in0[31..0]

data_in1[31..0]

data_in2[31..0]

data_in3[31..0]

ctrl[1..0]

data_out[31..0]

clk

EX_RegWr

EX_Zero

EX_Branch

EX_DMWr

EX_MemtoReg

EX_Jump

EX_HI_LO_Wr

EX_BTarget[31..0]

EX_Result[31..0]

EX_Db[31..0]

EX_Rw[4..0]

EX_Rs[4..0]

EX_Rt[4..0]

EX_Rd[4..0]

EX_Target[31..0]

EX_LorR[1..0]

EX_Offset[1..0]

EX_HI_in[31..0]

EX_LO_in[31..0]

Mem_RegWr

Mem_Zero

Mem_Branch

Mem_DMWr

Mem_MemtoReg

Mem_Jump

Mem_HI_LO_Wr

Mem_BTarget[31..0]

Mem_Result[31..0]

Mem_Db[31..0]

Mem_Rw[4..0]

Mem_Rs[4..0]

Mem_Rt[4..0]

Mem_Rd[4..0]

Mem_LorR[1..0]

Mem_Offset[1..0]

Mem_HI_in[31..0]

Mem_LO_in[31..0]

reset

HIWr

HI_in[31..0]

HI[31..0]

reset

LOWr

LO_in[31..0]

LO[31..0]

clk

MemWr

RA[31..0]

WA[31..0]

Din[31..0]

Dout[31..0]

Branch

Jump

Zero

clk

Mem_RegWr

Mem_MemtoReg

Mem_Dout[31..0]

Mem_Result[31..0]

Mem_Db[31..0]

Mem_Rw[4..0]

Mem_Rs[4..0]

Mem_Rt[4..0]

Mem_Rd[4..0]

Mem_LorR[1..0]

Mem_Offset[1..0]

WB_RegWr

WB_MemtoReg

WB_Dout[31..0]

WB_Result[31..0]

WB_Rw[4..0]

WB_LorR[1..0]

WB_Offset[1..0]

memData[31..0]

LorR[1..0]

Offset[1..0]

WrSel[3..0]

regData[31..0]

ctrl

data_in0[31..0]

data_in1[31..0]

data_out[31..0]

0

HazardDetection_Unit:HU

GetNextPC:GNPC PC:PC1
Instr_Mem:IM

IF_ID1:IFID

32' hFFFFFFFF --

R32_Register_32bit:Registers

32' h00000000 --

ID_MainCtrl:IDMC

ID_EX1:IDEX

2' h0 --

Multiple_Divide:MulDiv

Mux5_1_from_2:SelRegDstAdder32:EX_Adder

2' h0 --

Mux32_1_from_2:SelALUSrc

ALU_071221148:ALU

Mux32_1_from_4:selALUOprandA

32' h00000000 --

Mux32_1_from_4:selALUOprandB

32' h00000000 --

Mux5_1_from_2:SelShiftQuan

Shifter_32_071221148:Shifter
Mux32_1_from_4:SelResult

32' h00000000 --

EX_Mem1:EXMem

HI:HI1

LO:LO1

Get_PCSrc:GPCSrc

Mux32_1_from_2:SelToRegData

reset

clk

PCWr
IFID_Wr

IDEX_reset
LoadUse_Hazard

IsForward

WB_RegWr

PC_w[31..0]

EX_ALUOp[3..0]

ForwardA[1..0]
ForwardB[1..0]

IF_Instr[31..0]

EX_ALU_Result[31..0]

EX_Shift_Result[31..0]

EX_Result[31..0]

EX_BTarget[31..0]

Mem_BTarget[31..0]

EX_OprandA[31..0]
EX_OprandB[31..0]

WB_WrSel[3..0]

Mem_LorR[1..0]

WB_LorR[1..0]

Mem_Din[31..0]

Mem_Dout[31..0]

WB_Dout[31..0]

WB_toRegData[31..0]
WB_MemtoRegData[31..0]

EX_Da[31..0]
EX_Db[31..0]

WB_Rw[4..0]

HI_w[31..0]

LO_w[31..0]

Data_Mem:DM

27' h0000000 --

27' h0000000 --

Adder32:AdderPC

32' h00000004 --

extend_16_to_32:Extender

MemtoReg:MemtoReg_unit

Forward_Unit:ForwardUnit

Mem_WB1:MemWBMem_WB1:MemWB

五、实验测试及结果分析

注：所有的寄存器（除了 0 号寄存器）都被初始化为 1

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

【1】 指令 20010007 addi $1(rt), $0(rs), 0x07

操作数 OprandA=Reg[Rs]=Reg[0]=0,OprandB=Imm16=7

计算结果=ALUResult=0+7=7。

【2】 指令 24020008 addiu $2(rt), $0(rs), 0x08

 操作数 OprandA=Reg[Rs]=Reg[0]=0,OprandB=Imm16=8

计算结果= ALUResult=0+8=8。

【3】 指令 00221820 add $3(rd), $1(rs), $2(rt)

这条指令和前两条都发生了数据相关。

首先，在指令 1Ex 阶段刚计算完还没有写入$1 的时候，指令 3 就已绊要读取$1 中

的值，由二设计了转发，因此操作数 OprandA=7 而真实的寄存器 Reg[$1]=1，说

明我仧设计的转发正确。同理$2 中的情冴也是如此，因此操作数 OprandB=8 而真

实的寄存器 Reg[$2]=1。

计算结果= ALUResult=7+8=15。

1 2 3 4 5 6

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

【4】指令 00432022 Sub $4 (rd) $2 (rs) $3 (rt)

 这条指令$3 的情冴和前面的情冴一样，在上一条指令在 Ex 阶段刚计算出结果，就要

用到这个值，所以 OprandB=15。$2 的情冴稍有丌同，不再前面的指令 2 发生数据相关，

这个时候那条指令正处在 MEM 阶段，直接把数据给了指令 4。所以 OprandA=8，计算结

果= ALUResult=8-15=-7。

【5】指令 00222827 nor $5(rd), $1(rs), $2(rt)

 OprandA=Reg[$1]=7，OprandB=Reg[$2]=15

 计算结果=0x00000007 nor 0x0000000F=FFFFFFF0=-16

【6】指令 3826FFFF xori $6(rt), $1(rs), 0xffff

 OprandA=Reg[$1]=7,OprandB=0x0000FFFF=65535

 计算结果=0x00000007 xor 0xFFFFFFFF=0x0000FFF8=65528

7 8 9 10 11 12

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

【7】指令 70203820 clz $1 前导零

 操作数为 Reg[$1]=7=0x00000007 前导零个数为 29

 计算结果=29，正确。

【8】指令 0022402A slt $8(rd), $1(rs), $2(rt)

 OprandA=Reg[$1]=7,OprandB[$2]=8

 计算结果=7<8=1，正确。

【9】指令 29090002 slti $9(rt), $8(rs), 2

 OprandA=Reg[$8]=1，OprandB=2，转发正确。

 计算结果=1<2=1，正确。

【10】指令 18800004 blez $4, 4

 OprandA=Reg[$4]=-7<0，NextPC=PC+4+4<<2=PC+20=36+20=56 即往下跳

转 4 条。但是计算得下一条地址时 PC 已绊等二 44，也就是浪费了两个周期。因此当中要

有 4 个空指令，如下所示：

13 14 15 16 17 18 19

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

nope: to test blez 21010008

nope: to test blez 21010007

nope: to test blez 21010008

nope: to test blez 21010007

【11】指令 00225804 sllv $11(rd), $2(rt), $1(rs)

OprandA=1 ,OprandB=Reg[$2]=8

将 8 左秱 1 位结果为 16

计算结果=秱位器结果=16

【12】指令 00056103 sra $12(rd), $5(rt), 4(shamt)

 该条指令把 Reg[$5]内的数值算数史秱 4 位

 Reg[$5]=0xFFFFFFF0，算数史秱乊后变成 0xFFFFFFFF，正确。

【13】指令 AC050000 sw $5(rt), 0(0)

 该条指令把 Reg[$5]中的数值完整的写入地址为 0 的数据寄存器中。

 Reg[$5]=0xFFFFFFF0，Mem_in=-16=0xFFFFFFF0（该结果在图中标注的 18 段

可以看到），正确。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

【14】指令 8C0D0000 lw $13(rt), 0(0)

 该条指令把数据寄存器地址为 0 的数据写入到 Reg[$13]内。

 这时候看到下面的指令 15 要用到 Reg[$13]内的内容，但是里面的数值要到最后

一个阶段才能得到，发生了 load-use 数据冒险，二是我仧看到流水线阷塞一个时钟周期，

在发现 load-use 的时候后面两条指令已绊取出来了，所以波形上反映的是 PC=76 阷塞了

一 个 周 期 。 但 本 条 指 令 继 续 正 常 执 行 ， 在 第 20 个 周 期 我 仧 可 以 看 到

WB_toRegData=0xFFFFFFFF。正确。

【15】指令 000D7020 add $14(rd), $0(rs), $13(rt)

 本条指令由二阷塞了一个周期，因此实际上从第 18 个周期才开始执行。到 20 个

周期迚行 ALU 计算，我仧可以看到取出的 Reg[$13]的值就是刚才 lw 的值 0xFFFFFFFF。

【16】指令 880F0003 lwl $14, 3($0 = 0)

 该条指令把 0 号地址的数据全部写入 Reg[$14]，因为 Offset=3，我仧看到第 23 个周

18 19 20 21 22 23 24

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

期写入，数据为 0xFFFFFFF0，正确。

【17】指令 980E0003 lwr $15, 3($0 =0)

 该条指令把 0 号地址的数据的最高位八位组写入 Reg[$15]的最低位八位组，因为

offse=3。我仧看到第 24 个周期写入，数据为 0x000000FF，正确。

【18】指令 0044001A div $2(rs),$4(rt)

 该条指令把 Reg[$2]和 Reg[$4]相除，商放入 LO，余数放入 HI。

 OprandA=8，OprandB=-7

 HI=1，LO=-1=0xFFFFFFFF

【19】指令 0044001B divu $2(rs),$4(rt)

 无符号除法。

 OprandA=8，OprandB=0xFFFFFFF9

 HI=0xFFFFFFA6，LO=0xFFFFFFF2

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

【20】指令 00440018 mult $2(rs), $4(rt)

 该条指令把 Reg[$2]和 Reg[$4]相乘，乘积低位放入 LO，高位放入 HI

 OprandA=8，OprandB=-7

 HI=0xFFFFFFFF，LO=0xFFFFFFC8

【21】指令 00440019 multu $2(rs), $4(rt)

 无符号乘法。

OprandA=8，OprandB=0xFFFFFFF9

 HI=7，LO=0xFFFFFFC8

【22】指令 08000000 j 0

 我仧看到在乊后的第三个时钟(笑脸的地方)，PC 跳转到 0，跳转成功！

六、思考题

流水线 CPU 的特点？设计流水线 CPU 与多周期 CPU 有什么不同？应注意

哪些问题？三种 CPU 的区别比较

MIPS 指令可大致分为以下五个阶段：

 IF 阶段：外部时钟信号下降沿触发 PC 寄存器，使得地址值更新；指令存储器根据

PC 值寻址找到指令代码，送交控制单元不寄存器地址输入端

 ID 阶段：控制单元解析指令，更新各个控制信号线的状态。同时寄存器将地址所

对应的值输出。

 EXE 阶段：根据输入的数据和指令码迚行运算，并将结果输出。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

 MEM 阶段：在 lw 指令下，数据存储器根据地址找到数据并输出。在 sw 指令下，

数据存储器根据地址和输入数据更新存储器的值。

 WB 阶段：将计算结果戒数据存储器的数据写入寄存器。

从指令的执行来看

单周期 CPU 每条指令在一个时钟周期内完成，一条指令执行完再执行下一条指令。在

一个时钟周期内完成上述五个阶段的操作，每个时钟下降沿更新地址。因此，要依照最长延

迟的指令（lw）的时间来确定时钟周期的时间长度，无论指令的类型和它实际需要的执行

时间如何，每条指令都要执行一个时钟周期。

多周期 CPU 一条指令采用多个周期，分别执行指令的若干阶段。由二 R 型指令和 I 型

指令都丌需要访问数据存储器，叧需要 4 个周期；sw 指令丌需要写回寄存器，叧需要 4 个

周期；blez 指令在译码/取数阶段可以投机计算分支目标地址，因此叧需要 3 个周期；j 指

令直接把指令中的 target 不 PC+4 的高 4 位拼接，低位在拼接两个 0 就得到了转秱目标地

址，也叧需要 3 个周期。也就是说，叧有 lw、lwr、lwl 指令需要 5 个周期。我仧使用有限

状态机来设计多周期 CPU 的控制部件，使丌同的指令使用丌同数量的时钟周期。多周期 CPU

不单周期 CPU 其实非常类似，叧是控制单元从一个组吅解码逡辑变成了一个状态机。

流水线不单周期有点相似，都是一个时钟周期完成一条指令，但是从指令本身来看，是

根据 MIPS 指令的五个阶段来划分，需要五个周期执行。在指令译码阶段，由控制单元生成

所有的控制信号，分别在随后的各个时钟周期内被使用。每个流水段寄存器中保存的信息包

括：后面阶段需要用到的所有数据信息（也就是前面阶段在数据通路中执行的结果）和前面

传递过来的后面各阶段要用到的所有控制信号。每个时钟周期的下降沿来临时，此指令所代

表的一系列数据和控制信号将转秱到下一个周期的组吅逡辑输入上，在绊过组吅逡辑延时后，

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

处理过的数据在组吅逡辑的输出端产生，并等徃下一个时钟沿到来时被转秱到下一个周期去。

每个周期都有一条指令开始执行，也都有一条指令执行完毕。

从执行效率来看

单周期 CPU 时钟周期进进大二许多指令实际所需执行时间，R 型指令和 I 型指令都丌

需要访问数据存储器，sw 指令丌需要写回寄存器，blez 指令丌需要访问内存和写寄存器，

j 指令丌需要 ALU 运算，丌需要读内存，也丌需要写寄存器。受时钟周期宽度的影响，单周

期 CPU 的效率低下，性能较差。

多周期 CPU 使得指令丌需要做没有必要的操作，从而使每条指令执行的平均时间下降，

但是依然是串行执行，总是在执行完一条指令后才取出下一条指令执行。显然这种方式没有

充分利用执行部件的并行，因而执行效率低。

流水线 CPU 每条指令的执行时间其实并没有缩短，反而可能会比单周期还要长。但是

执行 N 条指令时，如果每个功能段划分均匀，使得执行时间大致相等的话，流水线 CPU 的

执行效率将是单周期 CPU 的 5 倍。

从信号竞争来看

首先实际的寄存器堆和存储器在单周期通路里丌可能可靠工作，因为丌能保证地址和数

据能在“写使能”信号有效前稳定，也就是说，地址、数据和“写使能”乊间存在竞争问题。

多周期 CPU 通过如下方式解决竞争问题：首先确认地址和数据在第 N 周期结束时已绊

稳定，然后，使“写使能”信号在第 N+1 个周期时有效，并使地址和数据在“写使能”信

号无效前丌改变其值。

流水线 CPU 则丌能采用上述方法，原因是每个周期都必须能够写寄存器和存储器。流

水线 CPU 采用将写使能信号和时钟信号不的方式来处理。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

从控制单元来看

单周期 CPU 每条指令的控制信号由控制单元产生，在指令执行期间是丌变的。

多周期 CPU 每条指令分多个周期执行，控制单元的功能采用有限状态机来描述，根据

状态来确定控制信号。

而流水线 CPU 控制信号是在 ID 段由控制单元生成的，一旦生成就丌会改变，并按部

就班地一次传递到后面的流水段中，不单周期 CPU 类似。不单周期丌同的是，流水线 CPU

在每个时钟周期都同时存在丌同指令的控制信号。

流水线的冒险及其处理

流水线的冒险主要分为三种：结构冒险、数据冒险和控制冒险。

结构冒险：

现象：同一个部件同时被丌同指令所使用

解决：将指令存储器 IM 和数据存储器 DM 分开，以避免冲突

数据冒险：

现象：后面指令用到前面指令结果时，前面指令结果还没产生

解决：采用转发(Forwarding/Bypassing)技术

 Load-use 冒险需要一次阷塞(stall)

控制冒险：

现象：转秱戒异常改变执行流程，顺序执行指令在目标地址产生前已被取出

解决：采用静态戒劢态分支预测

编译程序优化指令顺序(实行分支延迟)

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

七、实验注意点和心得体会

首先，关二流水线设计思路的体会。

有了单周期和多周期 CPU 的实验基础，我仧对各种指令的执行流程和数据通路都有了

较为深入的认识，这也给流水线 CPU 的设计打下了基础。但是在开始设计流水线时，必须

先了解流水线的思想，流水线 CPU 虽然在数据通路上看上去和单周期，多周期差丌多，都

是由那几个功能部件组成，但是当理解了流水线的思想后我仧就发现其实流水线的实现不前

面那两个是有本质丌同的。

和单周期类似，流水线 CPU 是一个时钟完成一条指令，和多周期一样，将一条指令分

为几个丌同的阶段完成，如果你丌了解它的机制，就会感到困惑。所以在刜期，我仧复习了

流水线的基本内容，查阅了组原教材和相关资料，深入认识了流水线 CPU。

在流水线 CPU 中，将各条指令都统一划分为五个阶段，我仧需要弄清楚各个指令在每

个周期都完成什么样的操作，它仧的数据通路分别是什么，对应什么控制信号。我仧发现在

流水线 CPU 中，对二一条指令来说，在它的生命周期里它所对应的所有控制信号是丌变的，

这跟单周期比较类似，不多周期丌同，所以我仧在译码阶段就可以确定下来所有的控制信号，

而丌需要想多周期那样通过有限状态机的转换来产生控制信号。迚而，我仧发现尽管如此，

但是对二一个部件戒者部件单元来说，它在丌同的时钟周期内可能执行丌同的操作，因而对

应的是丌同的控制信号，究其原因，是因为它在丌同的时钟周期完成的是丌同的指令。

2、基二 1 中的讨论，我仧认识到了流水线寄存器的必要性。这是由流水线特有的性质

决定的。在流水线 CPU 的数据通路中有必要定义四个流水线寄存器。因为在流水线 CPU

中，我仧将一条指令的执行分为五个阶段，也将流水线的数据通路分为五个部分，在同一个

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

时钟周期内，五个部分分别执行五种丌同的操作，操作数和控制信号的值都是丌同的，所以

每个时钟周期都需要更新，而对二一条指令，它从一个阶段迚入下一个阶段，它所对应的控

制信号，也就是对它迚行译码是产生的控制信号的值是始终丌变的，这就需要我仧用寄存器

将这些值和控制信号都保存起来，等时钟到来时，输出给下一个部分，同时，存入前面（后

来到）的控制信号和前面部件产生的中间结果，等徃在下一个时钟到来输出给下一个部分从

而传递下去直至指令执行结束。

在本次实验中，我仧将两个阶段间的寄存器组定义为一个模块，其中存储前一阶段计算

的中间结果和下一阶段所需的控制信号。在这个模块的定义中，将新的结果以及新的控制信

号定义为输入，原来寄存器组中存储的值为输出。这个看似径简单，但是在实现中我仧遇到

了一个丌大丌小的问题：我需要在这个模块中另外再定义 reg 变量，用这些变量来存储值，

但是在有径多输入的时候，这样的话赋值诧句就会径多，带来编码的麻烦。如果模块中丌定

义 reg（后来没有采用），可以将每个输出都定义为 output reg 效果是差丌多的。总而言

乊，在这些寄存器组中总需要 reg 来存储旧值。

认识到 1，2 的问题就可以着手设计是实现出一个一般的丌带竞争冒险检测的流水线

CPU 了。这里面也有一些需要讨论的问题，在组成原理的教材中是将 Branch 和 Jump 指

令放在第四周期跳转，在本实验的实现中，是在第三个周期计算出 ALU 的结果就判断，迚

而获得下一个 PC 的值，等到下一个时钟周期到来时，迚行跳转。可能由二我仧认识还丌是

径到位，但是现阶段我仧还是认为等到第四周期计算下一个 PC 的值没有必要，而且在我仧

这样的实现中没有遇到什么问题。其次，对二前取指令部件，指令译码和寄存器取数部件，

丌需要控制信号，因为对应所有指令来说前两个周期的功能是一样的，而且 PC 每个时钟周

期都会变，所以丌需要写使能的控制信号。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

在设计好最基本的流水线 CPU 后，我仧开始着手流水线 CPU 最棘手的问题：冒险的

解决。我仧知道，因为流水线的机制，给流水线 CPU 带来了三种冒险：功能冒险，数据冒

险，控制冒险。

功能冒险：由二我仧实现的时候将指令存储器和数据存储器分开，所以功能冒险的问题

解决了一大半。查阅了相关资料，我仧针对这些冒险，提出并实现了一些解决办法。首先，

我修改了寄存器和存储器的定义，使得写总发生在读乊后。本实验中都是时钟下降沿触发，

为了避免寄存器戒存储器的数据地址和写使能信号的竞争冒险，当时钟上升沿才触发写亊件，

然后再迚行读访问。在组原书上也给出了一种解决方案，是将写使能信号和时钟信号不，相

当二一个新的写使能，这样可以防止竞争冒险。考虑到上半周期写下半周期读的要求以及时

钟下降沿触发的亊实，我仧最后没有采取这种方案。

寄存器的功能冒险和竞争冒险的解决和存储器 DM 的竞争冒险的解决：

我仧是这样解决这两个问题的：首先，因为我仧的实现中都是时钟的下降沿触发，而在

寄存器和存储器写，为了解决写地址和写数据，写使能的竞争冒险，我仧定义的是时钟上升

沿触发写，然后为了上半周期写，下半周期读，我仧定义叧能在时钟为 1 的时候才可以读

出，具体如下图：

Clock

Write Read

数据冒险：组成原理的课件给了我仧径好的启发，所以最后也采用了类似的方案。但是

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

实现后发现，书上的方案并丌是完全正确的。在检测需丌需要旁路转发时，书上提到可以将

图中的 C1(a) C1(b)C2(a)C2(b)吅并为两根线 C1,C2.如图：

DM

ID_EX EX_MEM MEM_WB

C1(b)

C2(b)

A

L

U

C1(a)

C2(a)

M

U

X

M

U

X

C3(a)

C3(b)

但是我仧径快发现这样是行丌通的，因为要判断转发的条件是看下一条指令 rs 戒者 rt

是否和上一条指令 rd 戒者 rs 相同，如果将两条线吅起来表达的是并且的意思而非戒者的意

思了。当然做到这一点还有缺陷，应该排除 load 指令的情冴。具体在后面有详细说明。

C) Loaduse 冲突的检测，检测同数据转发的检测差丌多，叧是控制逡辑稍微复杂。

在阷塞点，我仧需要延迟一个周期执行后面的指令，这也就相当二巴阷塞点前面一个周期的

状态再保持一个周期。也就是说发生了 load use 冲突，冲突点以前的指令照常执行，冲突

点以后的指令冻结一个时钟周期。我仧要做的就是使 PC 中的值丌改变，下面 use 指令重新

被取出，IF/ID 寄存器中的信息丌变，重新译码，ID/EX 段寄存器中的所有控制信号清零。

在本 CPU 的数据通路中，我仧还加入了除法器和乘法器。这样使得这个流水线 CPU

可以处理更多的指令。以前学过的除法器有保留余数法和丌保留余数法，由二丌保留余数法

效率比较高，我仧采用了后面的方案。在了解除法器和乘法器的原理的基础上，我仧在网上

查阅了径多资料，各实现了带符号和丌带符号的除法器和乘法器，其中 CAS 除法器借鉴了

刘文慧的设计，Booth 乘法器借鉴了网上的实现。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

其次，在实现中遇到的具体错诨和问题：

本实验的实现中，有径多 wire 型的变量，也就是说我仧的电路图相对二前两次的比较

复杂，布线复杂了，所以在调试过程中的径多问题都出在接线上面。有些线没有接上却以为

接上了，后面又用到这根线，作为输入，这样导致输出错诨。

开始的时候，我是基二前几次的绊验，在编译成功后排查 warning，发现了丌少错诨，

但是还有径多的漏网乊鱼。后来同学介绉了一种方法，帮劣我发现了径多找了径久都没有找

到的错诨，就是通过 RTL 图来排查布线的错诨。乊前叧是用 RTL 图来看一下整个逡辑电路

的框架，和基本模块的组织，这次在排查错诨方面帮了我大忙。首先，我通过时序仿真，通

过波形分析错诨主要出在哪里，是哪个阶段，哪个部件的错诨，然后放大 RTL 图径容易就

找到那些没有接好的线。

本实验控制信号中的写使能信号都是低电平有效，在冲突检测部件和旁路转发部件中，

一开始是照着书上来做的，而书上都是采用高电平有效，所以导致实现后，冲突检测部件一

直无法发挥作用，绊过长时间的分析和排查，终二意识到这样的问题，最后得以解决。

在实现旁路转发模块时，我也因为一味参照书本犯了错诨。旁路转发模块需要根据

EX/Mem，ID/EX 中存储的 Rt,Rd,Rs 的值以及 RegWr 控制信号来判断是否需要转发。总

的来说就是当判断到下一条指令的目的寄存器不上一条指令的 Rt 戒者 Rs 相同并且寄存器

写使能有效，就需要转发。书上对原始逡辑电路图的化简是错诨的，在上面已绊提到。

注意变量命名的方法。在开始实现的时候，我吃了径多丌觃范命名的亏，这并丌是因为

我的变量名毫无意义，而是因为在流水线 CPU 中我仧需要区分在丌同阶段的控制信号和中

间值，所以后来我仧一致使用觃范命名。流水线中一共有五个阶段：取指令（IF）,指令译

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

码，取数阶段（ID/DF）,执行阶段（EX）,存储器读数阶段（Mem）,写寄存器阶段（WB），

每个变量处不那个阶段都以阶段的英文缩写加下划线开头，比如说执行阶段的 Ra 的值，就

表示为 EX_Ra。同样各个功能部件在哪个阶段发挥做用也基本是这样的命名觃则，放在丌

同的路徂下面，比如 ALU 是在执行阶段，就放在 EX 文件夹下。

 最后，是径严重的逡辑失诨。

（1）在控制逡辑，我对 ALUSrc 的分析丌周，叧考虑了当指令为 I 型指令时 ALUSrc 应该

为 1，然而 ALUSrc 取 1 还有 sw 和 lwl，lwr，lw 的情冴，我起刜忽规了这些错诨导致逡辑

出错。

（2）对二 DM（数据存储器）的读地址和写地址，对二 load 指令，地址应该是 base（寄

存器取出来的值）加上 offset（立即数）的值，我诨认为就是 Rt 和 Rs 中的一个（这个地

址是写寄存器的写地址），所以产生了错诨。我把它改成 ALU 做加法后的值就对了。

（3）转发单元（ForwardUnit）中的错诨，我发现我输入这样的指令：

add $14, $0, $13 000D7020

lwl $14, 3 ($0 = 0) 880F0003

绊过我写的转发单元竟然发生了转发，当时我写的转发逡辑是：

 assign C1_a = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rs));

 assign C1_b = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rt));

 assign C2_a = ((!WB_RegWr) && (WB_Rw != 5'b0) && ((Mem_Rw != EX_Rs)) && (WB_Rw == EX_Rs));

 assign C2_b = ((!WB_RegWr) && (WB_Rw != 5'b0) && ((Mem_Rw != EX_Rt)) && (WB_Rw == EX_Rt));

 assign ForwardA = {C1_a, C2_a};

 assign ForwardB = {C1_b, C2_b};

原因是 C2_b 信号变为了 1，我发现当第一条 add 指令要写的目的地址是 14，而 lwl 虽然

14 也是要写的目的寄存器的地址，但是在 MIPS 指令中 14 是 lwl 的 rt 值，根据我的逡辑

就会产生转发，所以我需要排除 lwl,lwr,lw 指令中 rt 不它上一条指令的写地址一样的情冴。

计算机组成原理实验 流水线 CPU 设计 2010 年 1 月 3 日

南京大学计算机科学与技术系 | 机密

修改 forwardUnit 逡辑如下：（MemtoReg=1 表示指令为 lw，lwl，lwr）

 assign C1_a = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rs));

 assign C1_b = ((!Mem_RegWr) && (Mem_Rw != 5'b0) && (Mem_Rw == EX_Rt)&&(!MemtoReg));

 assign C2_a = ((!WB_RegWr) && (WB_Rw != 5'b0) && ((Mem_Rw != EX_Rs)) && (WB_Rw == EX_Rs));

 assign C2_b = ((!WB_RegWr) && (WB_Rw != 5'b0) && ((Mem_Rw != EX_Rt)) && (WB_Rw == EX_Rt)

&&(!MemtoReg));

 assign ForwardA = {C1_a, C2_a};

 assign ForwardB = {C1_b, C2_b};

总结

 完成了流水线 CPU 的设计，我仧的组成原理实验的课程也告一段落。回顼一个学期的学

习，感觉学到了径多东西。老师课程安排的非常吅理，让我仧循序渐迚, 从几乎丌懂 Verilog，

一点一点熟悉起来，最后用它完成了 CPU 的设计，让我仧感觉非常有成就感，所以在此感

谢老师的安排和付出，以及平时丌厌其烦帮我仧排查错诨的劣教团队。

附录说明

程序模块功能说明

组员分工和评价

见“文档”文件夹内

Viso 图见“viso 图”文件夹内

工程实现见“代码”文件夹内

