
第一讲 流水线数据通路和控制逻辑

第二讲 流水线冒险处理

第三讲 高级流水线技术

Ch7: Instruction Pipeline
指令流水线

Pipeline.2 2009年5月26日星期二

第一讲 流水线数据通路和控制

° 日常生活中的流水线处理例子：洗衣服

° 单周期处理器模型和流水线性能比较

° 什么样的指令集适合于流水线方式执行

° 如何设计流水线数据通路

• 以MIPS指令子集来说明

• 详细设计取指令部件

• 详细设计执行部件

• 分析每条指令在流水线中的执行过程，遇到各种问题：

- 资源冲突

- 寄存器和存储器的信号竞争

- 分支指令的延迟

- 指令间数据相关

° 如何设计流水线控制逻辑

• 分析每条指令执行过程中的控制信号

• 给出控制器设计过程

° 流水线冒险的概念

主 要 内 容

Pipeline.3 2009年5月26日星期二

复习：A Single Cycle Processor

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr

A
L

U

Zero

0

1

0

1

01

Instruction
Fetch Unit

Clk

Instruction<31:0>Jump

Branch

<21:25>

<16:20>

<11:15>

<0:15>

Imm16
Rd

Main
Control

op

ALU
Controlfunc

ALUop

3

RegDst
ALUSrc

:

<5:0>

<31:26>

Instr<15:0>

Zero

3

Pipeline.4 2009年5月26日星期二

复习：Multiple Cycle Processor

° MCP: 一个功能部件在一个指令周期中可以被使用多次。

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr
32

A
L

U

32
32

ALUOp

ALU
Control

Instruction R
eg

32

IRWr

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

Target
32

Zero

Zero
PCWrCond PCSrc BrWr

32

IorD

Pipeline.5 2009年5月26日星期二

复习：Timing Diagram of a Load Instruction

Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA
Register File Access Time

Old Value New Value

busB
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

ExtOp Old Value New Value

ALUSrc Old Value New Value

Address Old Value New Value

busW Old Value New

Delay through Extender & Mux

Data Memory Access Time

Instruction Fetch Instr Decode /
Reg. Fetch

Address Reg WrData Memory

R
egister File W

rite T
im

e

1

3

2

Pipeline.6 2009年5月26日星期二

° Laundry Example
• Ann, Brian, Cathy, Dave 

each have one load of clothes to 
wash, dry, and fold

• Washer takes 30 minutes
• Dryer takes 40 minutes
• “Folder” takes 20 minutes

A B C D

Pipelining: It’s Natural !

一个日常生活中的例子—洗衣服

如果让你来管理洗衣店，你会如何安排？



Pipeline.7 2009年5月26日星期二

Sequential Laundry（串行方式）

° 串行方式下， 4 批衣服需要花费 6 小时（4x(30+40+20)=360分钟）

° N批衣服，需花费的时间为Nx(30+40+20) = 3N x 30
° 如果用流水线方式洗衣服，则花多少时间呢? 

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

Pipeline.8 2009年5月26日星期二

Pipelined Laundry: (Start work ASAP)

串行方式为6小时，N批则为90N分钟A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

只需30+4x40+20=210分 (3.5小时)

如果有N批衣服呢？

所花时间为：30+Nx40+20分钟

假定每一步时间均衡，则比串行方

式提高约3倍！

流水方式下，所花时间主要与最长阶段时间有关！

Pipeline.9 2009年5月26日星期二

复习：Load指令的5个阶段

° Ifetch (取指) : 从指令存储器取指令并计算PC+4 (用到哪些部件？)

° Reg/Dec (取数和译码) : 寄存器取数，同时对指令进行译码 (用到哪些部件？)

° Exec (执行) : 计算内存单元地址 (用到哪些部件？)

° Mem (读存储器) : 从数据存储器中读 (用到哪些部件？)

° Wr(写寄存器): 将数据写到寄存器中 (用到哪些部件？)

阶段1 阶段 2 阶段 3 阶段 4 阶段5

Ifetch Reg/Dec Exec Mem Wr

指令存储器、Adder

寄存器堆读口、指令译码器

扩展器、ALU

数据存储器

寄存器堆写口

这里寄存器堆的读口和写口可看成两个不同的部件。

指令的执行过程是否和“洗衣”过程类似？是否可以采用类似方式来执行指令呢？

Pipeline.10 2009年5月26日星期二

单周期指令模型与流水线性能
° 假定以下每步操作所花时间为：

- 取指：2ns
- 寄存器读：1ns
- ALU操作：2ns
- 存储器读：2ns
- 寄存器写：1ns

° 单周期模型

• 每条指令在一个时钟周期内完成

• 时钟周期等于最长的lw指令的执行时间，即：8ns
• 串行执行时，N条指令的执行时间为：8Nns

° 流水线性能

• 时钟周期等于最长阶段所花时间为：2ns
• 每条指令的执行时间为： 10ns
• N条指令的执行时间为：(2+2xN+1)ns
• 在N很大时，比串行方式提高约 4 倍
• 若各阶段操作均衡，则提高倍数为：

非流水线执行时间 / 流水线执行时间 = 流水线步骤数

Load指令执行时间总计为：8ns
(假定控制单元、PC访问、信号传递等没有延迟)

流水线方式下，单条指令的执行时间不能缩短，但能大大提高指令的吞吐量

Pipeline.11 2009年5月26日星期二

流水线指令集的设计

° 具有什么特征的指令集有利于流水线执行呢？

• 指令长度尽量一致，有利于简化取指令和指令译码操作

- MIPS指令都是32位，每次取四个单元的指令，且下址计算方便: PC+4

- X86指令从1字节到17字节不等，使取指部件及其复杂

• 指令格式少，且源寄存器位置相同，有利于在指令未知时就可取操作数

- MIPS指令的Rs和Rt位置一定，在指令译码时就可读Rs和Rt的值

（若位置随指令不同而不同，则需先译码确定指令后才能取寄存器编号）

• 只有load / Store指令才能访问存储器，有利于减少操作步骤，规整流水线

- 可以把lw/sw指令的地址计算和运算指令的执行步骤规整在同一个周期

- X86运算类指令的操作数可以是内存数据，故需计算地址、访存、执行

• 数据和指令在内存中要”对齐”存放，有利于减少访存次数和流水线的规整

总之，规整、简单和一致等特性有利于指令的流水线执行

指令的流水线执行方式能大大提高指令的吞吐率，现代计算机都采用流水线方式

Pipeline.12 2009年5月26日星期二

Load指令的流水线

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st lw

Ifetch Reg/Dec Exec Mem Wr2nd lw

Ifetch Reg/Dec Exec Mem Wr3rd lw

• 每个周期有五个功能部件同时在工作

• 后面指令在前面完成取指后马上开始

• 每个load指令仍然需要五个周期完成

• 但是吞吐率(throughput)提高许多，理想情况下，有：

• 每个周期有一条指令进入流水线

• 每个周期都有一条指令完成

• 每条指令的有效周期(CPI)为1



Pipeline.13 2009年5月26日星期二

R-type指令的4个阶段

° Ifetch: 取指令并计算PC+4

° Reg/Dec: 从寄存器取数，同时指令在译码器进行译码

° Exec: 在ALU中对操作数进行计算

° Wr: ALU计算的结果写到寄存器

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

Pipeline.14 2009年5月26日星期二

含R-type和 Load 指令的流水线

° 上述流水线有个问题: 两条指令试图同时写寄存器

• Load在第5阶段用寄存器写口

• R-type在第4阶段用寄存器写口

° 把一个功能部件同时被多条指令使用的现象称为结构冒险(Struture Hazard)
° 为了流水线能顺利工作，规定：

• 每个功能部件每条指令只能用一次（如：写口不能用两次或以上）

• 每个功能部件必须在相同的阶段被使用（如：写口总是在第五阶段被使用）

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ops!  We have a problem!

可以用以下两种方法解决上述结构冒险问题！

Pipeline.15 2009年5月26日星期二

解决方案1: 在流水线中插入“Bubble”（气泡）

° 插入“Bubble”到流水线中，以禁止同一周期有两次写寄存器。缺点：

• 控制逻辑复杂

• 第5周期没有指令被完成（CPI不是1，而实际上是2）

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

IfetchR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec ExecR-type
Ifetch Reg/DecR-type

Ifetch Reg/Dec Exec Wr

Reg/Dec Exec Wr

Ifetch Reg/Dec Exec

Wr

Exec Wr

Reg/Dec Exec Wr

Ifetch Reg/Dec Exec

Wr

Exec WrPipeline
Bubble

方案不可行！

Pipeline.16 2009年5月26日星期二

解决方案2: R-type的Wr操作延后一个周期执行

° 加一个NOP阶段以延迟“写”操作:
• 把“写”操作安排在第5阶段, 这样使R-Type的Mem阶段为空NOP

这样使流水线中的每条指令都有相同多个阶段!

Ifetch Reg/Dec Exec WrR-type
1 2 3 4 5

Mem

Clock Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec WrR-type

Ifetch Reg/Dec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec WrR-type

Ifetch Reg/Dec WrR-type

Mem

Exec

Exec

Exec

Exec

Mem

Mem

Mem

NOOP!

Pipeline.17 2009年5月26日星期二

Store指令的四个阶段

° Ifetch：取指令并计算PC+4

° Reg/Dec： 从寄存器取数，同时指令在译码器进行译码

° Exec：16位立即数符号扩展后与寄存器值相加，计算主存地址

° Mem：将寄存器读出的数据写到主存

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr

°Wr: 加一个空的写阶段，使流水线更规整！

NOOP!

Pipeline.18 2009年5月26日星期二

Beq的四个阶段

° Ifetch: 取指令并计算PC+4
° Reg/Dec:从寄存器取数，同时指令在译码器进行译码

° Exec: 执行阶段

• ALU中比较两个寄存器的大小（做减法）

• Adder中计算转移地址

° Mem: 如果比较相等, 则：

• 转移目标地址写到PC

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr

NOOP!

°Wr: 加一个空的写阶段，使流水线更规整！

给出的流水线通路中的处理过程

和多周期通路中的有什么不同？

多周期通路中，在Reg/Dec阶段

投机进行了转移地址的计算！

可以减少Branch指令的时钟数

为什么流水线中不进行“投机”计算？

因为，流水线中所有指令的执行阶
段一样多，Branch指令无需节省

时钟，因为有比它更复杂的指令。按照上述方式，把所有指令都按照最复杂的
“load”指令所需的五个阶段来划分，不需要
的阶段加一个“NOP”操作



Pipeline.19 2009年5月26日星期二

A Pipelined Datapath（五阶段流水线数据通路）

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

PC

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Clk

Ifetch (IF) Reg/Dec (ID) Exec (Ex) Mem Wr

Clock-to-Q delay

下面看一下每条指令在流水线通路中的执行过程

W
r阶

段
没

有
D

ataPath
吗

？

有！寄存器写口

为什么需要这些Reg？
保存每个周期执行的结果!
不同于PC，属于内部寄存器，
对程序员透明，不需作为现场保存 Pipeline.20 2009年5月26日星期二

取指令（Ifetch) 阶段

IF/ID
: lw

$1, 100 ($2)

ID
/E

x R
egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

PC
 = 14 Data

Me
m

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Clk
Ifetch Reg/Dec Exec Mem

You are here!
° 第10单元指令:  lw $1, 0x100($2)       功能：$1 <- Mem [($2) +  0x100]

有谁发现这里有一个假设有问题？

下一目标：设计IUnit

MIPS指令的地址可能是10吗？

Pipeline.21 2009年5月26日星期二

指令部件 IUnit的设计

° 第10单元指令: : lw $1, 0x100($2)                  随后的指令在14号单元中！

IF/ID
: lw

$1, 100 ($2)

PC
 = 14

1
0

10

A
dder

Instruction
Memory

“4”

Instruction

Address

Clk

Ifetch

You are here!

Reg/Dec

开始从14号单

元取指令！

PC 新值（14） ≠
旧输出（10）

流水段寄存器用来存
放每个阶段（一个时
钟内）的执行结果

总是在下个时钟到来
后的Clock-to-Q写入

取指阶段有哪些控制信号？

不需要控制信号，因为每条指令所执行的功能都一样，是确
定的操作，无需根据指令的不同来控制执行不同的操作！

指令部件的功
能是什么？

Instr <- Mem[PC]
PC<- PC+4

这里MUX
的控制信号
由其他阶段
产生！

应该把哪些信息保存到
流水段寄存器IF/ID中？

应保存后面阶段要用到
的指令和PC+4的值！

指令在随后阶段送出译码！
PC+4用来计算转移目标地址！

Pipeline.22 2009年5月26日星期二

译码/取数（Reg/Dec）阶段

IF/ID
:

ID
/E

x: R
eg. 2 &

0x100

E
x/M

em
R

egister

M
em

/W
r

R
egister

PC
 

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Clk
Ifetch Reg/Dec Exec Mem

You are here!
° Location 10: lw $1, 0x100($2)       功能：$1 <- Mem[($2) +  0x100]

Reg[Rs],Reg[Rt],Rt,Rd,Imm16,
PC+4等被保存在ID/EXE中

该阶段有哪些控制信号？ 没有！因是所有指令的公共操作，故无控制信号！

指令还要存在
ID/EX中吗？
不要，只要存
相关信息！

Pipeline.23 2009年5月26日星期二

Load指令的地址计算阶段

IF/ID
: ID

/E
x R

egister

E
x/M

em
: L

oad’s A
ddress

M
em

/W
r

R
egister

PC

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr

Exec
Unit

busA
busB

Imm16

M
ux

1

0

MemtoReg

1
0Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Clk
Ifetch Reg/Dec Exec Mem

You are here!

° Location 10: lw $1, 0x100($2)       功能：$1 <- Mem[($2) +  0x100]

ExtOp=？
ALUOp=？

ALUSrc=？RegDst=0

指令已被译码，可确定执行部件的控制信号！

下一目标：设计执行部件(Exec Unit)

如果目的寄存器Rt不
传递下去，会怎样？

其他指令的Rt作为目的地

址，指令执行错误！
Pipeline.24 2009年5月26日星期二

执行部件（Exec Unit）的设计

ID
/E

x R
egister

E
x/M

em
: L

oad’s M
em

ory A
ddressALU

Control

ALUctr

32
busA

32
busB

E
xtender

M
ux

16

imm16

ALUSrc=?ExtOp=?

3

A
L

U

Zero

0

1

32
ALUout

32

A
dder

3ALUOp=?

<< 2

32
PC+4

Target

32

Clk

Exec

You are here!

Mem
Adder用于计算分支

指令的转移地址

RegDes=0, ALUSrc=1
ALUop=add, Extop=1

Load指令的各控

制信号取值？

执行部件功能是什么？

综合前面每条指令
在执行阶段的功能，
可知:
•计算数据内存地址

•计算转移目标地址

•一般ALU运算

Branch指令呢？

RegDes=x, ALUSrc=0
ALUop=sub, Extop=1

Store指令呢？
RegDes=x, ALUSrc=1
ALUop=abb, Extop=1

Ori指令呢？

RegDes=0, ALUSrc=1
ALUop=or, Extop=0 R型指令呢？ RegDes=1, ALUSrc=0

ALUop=‘func’, Extop=x



Pipeline.25 2009年5月26日星期二

Load指令的存储器读(Mem)周期

IF/ID
: ID

/E
x R

egister

E
x/M

em
R

egister

M
em

/W
r: L

oad’s D
ata

PC

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr=0

RegWr ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch=0

1
0

Clk
Ifetch Reg/Dec Exec Mem

You are here!
° Location 10: lw $1, 0x100($2)       功能： $1 <- Mem[($2) +  0x100]

周期以最长操作为准设计Cycle > Tread

比较洗衣流水线，指令
流水线有什么不同？
洗衣流程不能反向进行，但

该阶段有反向数据流，可能会
引起冒险！以后介绍。

Pipeline.26 2009年5月26日星期二

Load指令的回写（Write Back）阶段

IF/ID
: ID

/E
x R

egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

PC

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr=1 ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg=1

1
0

RegDst

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Clk
Ifetch Reg/Dec Exec Mem

° Location 10: lw $1, 0x100($2)       功能：$1 <- Mem[($2) +  0x100]

Wr

各阶段所经DataPath已有，控制信号如何得到？

比较洗衣流水线，指令
流水线有什么不同？
洗衣流程不能反向进行，但

该阶段有反向数据流，可能会
引起冒险！以后介绍。

Pipeline.27 2009年5月26日星期二

流水线中的Control Signals如何获得?
° 主要考察: 第N阶段的控制信号,它取决于是哪条指令的哪个阶段。

• N  =  Exec, Mem, or Wr (只有这三个阶段有控制信号）

• 例: Load的Exec段的控制信号 = Func (Load’s Exec)

MemWr MemtoRegRegDst=0
IF/ID

: ID
/E

x R
egister

E
x/M

em
: L

oad’s A
ddress

M
em

/W
r

R
egister

PC

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

RegWr ExtOp=1

Exec
Unit

busA
busB

Imm16

ALUOp=Add

ALUSrc=1

M
ux

1

0
1
0Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Ifetch Reg/Dec Exec Mem
Wr

为什么 1st 和 2nd 阶
段没有控制信号?

IF和ID阶段的功能对每条指令来说都一样，且各阶段功能部件独立！

Pipeline.28 2009年5月26日星期二

Load指令:流水线中的控制信号

° 在取数/译码（Reg/Dec）阶段产生本指令每个阶段的所有控制信号

• Exec信号 (ExtOp, ALUSrc, ...) 在1个周期后使用

• Mem信号 (MemWr, Branch) 在2个周期后使用

• Wr信号 (MemtoReg, RegWr) 在3个周期后使用

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch

MemWr

Wr

各个流水段部件在一个时钟内完成某条指令的某个阶段的工作！

所以，控制信号
也要保存在流水
段寄存器中！

然后，在下个时钟到达时，把执行的结果以及前面传递过来的后面各阶段要用到的所有数
据（如：指令、立即数、目的寄存器等）和控制信号保存到流水线寄存器中！

Pipeline.29 2009年5月26日星期二

流水线中的Control Signals
° 通过对前面流水线数据通路的分析，得知：

• 因为每个时钟都会改变PC的值，所以PC不需要写控制信号

• 流水段寄存器每个时钟都会写入一次，也不需要写控制信号

• Ifecth阶段和Dec/Reg阶段都没有控制信号

• Exec阶段的控制信号有四个

- ExtOp (扩展器操作)：1- 符号扩展；0- 零扩展

- ALUSrc (ALU的B口来源)：1- 来源于扩展器；0- 来源于BusB
- ALUOp (主控制器输出，用于辅助局部ALU控制逻辑来决定ALUCtrl)
- RegDst (指定目的寄存器)：1- Rd；0- Rt

• Mem阶段的控制信号有两个

- MemWr (DM的写信号)：Store指令时为1，其他指令为0
- Branch (是否为分支指令)：分支指令时为1，其他指令为0

• Wr阶段的控制信号有两个

- MemtoReg (寄存器的写入源)：1- DM输出；0- ALU输出

- RegWr (寄存器堆写信号)：结果写寄存器的指令都为1，其他指令为0

Pipeline.30 2009年5月26日星期二

控制逻辑 Control)的设计

° 流水线控制逻辑的设计

• 每条指令的控制信号在指令执行期间都不变

（谁记得单周期和多周期时是怎样的情况？）

• 与单周期控制逻辑设计类似

（谁记得单周期和多周期控制逻辑各是怎样设计的？）

• 设计过程

- 控制逻辑分成两部分

– 主控制逻辑：生成ALUop和其他控制信号

– 局部ALU控制逻辑：根据ALUop和func字段生成ALUCtrl

- 用真值表建立指令和控制信号之间的关系

- 写出每个控制信号的逻辑表达式

• 控制逻辑的输出在ID阶段生成，并存放在ID/EX流水段寄存器中，然后每来一个

时钟跟着指令传送到下一级流水段寄存器

• 同一时刻在不同阶段执行不同指令，因而不同阶段的控制信号对应不同的指令

忘记单周期和多周期控制设计的同学，复习一下第五章的内容！



蓝色部分是控制信号

Pipeline.32 2009年5月26日星期二

Load指令:流水线中的控制信号

° 在取数/译码（Reg/Dec）阶段产生本指令每个阶段的所有控制信号

• Exec信号 (ExtOp, ALUSrc, ...) 在1个周期后使用

• Mem信号 (MemWr, Branch) 在2个周期后使用

• Wr信号 (MemtoReg, RegWr) 在3个周期后使用

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch
MemWr

Wr

保存在流水段寄存器中的信息（包括前面阶段传递来或执行的结果

及控制信号）一起被传递到下一个流水段！

所以，控制信号也要保存在流水段寄存器中！

Rt

Data

(这里是否会有问题？)

Rt和Data在RegWr后到达怎么办？

同样，这里
也有问题！

Pipeline.33 2009年5月26日星期二

Wr阶段的开始: 存在一个实际的问题！

° 在流水线中也存在地址 和 写使能之间的“竞争”问题

• Wr段开始时，如果RegAdr’s (Rd/Rt) Clk-to-Q   >   RegWr’s Clk-to-Q, 则错写寄存器！

• Mem 阶段开始时，如果WrAdr’s Clk-to-Q   >   MemWr’s Clk-to-Q, 则错写存储器！

° 不能用多周期中的方法！为什么？

E
x/M

em

M
em

/W
r RegAdr

RegWr MemWr

Data
WrAdr
Data

Reg
File

Data
Memory

Clk

RegAdr

RegWr
RegWr’s Clk-to-Q

RegAdr’s Clk-to-Q

Clk

WrAdr

MemWr
MemWr’s Clk-to-Q

WrAdr’s Clk-to-Q

哪个同学记得多周期中是如何处理“竞争”问题的？

Pipeline.34 2009年5月26日星期二

流水线中的“竞争”问题

° 多周期中解决 Addr 和 WrEn之间竞争问题的方法:
• 在第 N周期结束时，让Addr信号有效

• 在第 N + 1周期让WrEn有效

° 上述方法在流水线设计中不能用，因为：

• 每个周期必须能够写Register
• 每个周期必须能够写Memory

Clock

Ifetch Reg/Dec Exec Mem WrStore

Ifetch Reg/Dec Exec Mem WrStore

Ifetch Reg/Dec Exec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrR-type°如何解决? 

保证Addr信号在
WriteEnable信号

之前到达

Pipeline.35 2009年5月26日星期二

寄存器组的同步和存储器的同步

° 解决方案:  将Write Enable和时钟信号“与”

1. Address, Data, 和 WrEn 必须在Clk边沿
到来后至少稳定一个 set-up时间

2.Clk高电平时间 大于 写入时间

Clk

Address
Data

WrEn

Reg File
or

Memory

WrEn

I_Addr
I_Data

Reg File
or

Memory

Clk

I_Addr
I_WrEn

Address
Data

I_WrEn

C_WrEn

C_WrEn

Actual write

等价于

须由电路专家确保不会发生“定时错误”
（即：能合理设计“Clock”!）

相当于单周期通路中的理想寄存器和存储器

Pipeline.36 2009年5月26日星期二

流水线举例：考察流水线DataPath的数据流动情况

End of
Cycle 4

End of
Cycle 5

End of
Cycle 6

End of
Cycle 7

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem Wr0: Load

Ifetch Reg/Dec Exec Mem Wr4: R-type

Ifetch Reg/Dec Exec Mem Wr8: Store

Ifetch Reg/Dec Exec Mem Wr12: Beq (target is 1000)

° End of Cycle 4: Load’s Mem, R-type’s Exec,  Store’s Reg,  Beq’s Ifetch
° End of Cycle 5: Load’s Wr,     R-type’s Mem,  Store’s Exec, Beq’s Reg
° End of Cycle 6:                         R-type’s Wr,    Store’s Mem, Beq’s Exec
° End of Cycle 7:                                                 Store’s Wr,     Beq’s Mem

考察以下几个点的情况：

说明：后面仅考察数据流动情况，控制信号随数据同步流动，不再说明控制信号的流动



Pipeline.37 2009年5月26日星期二

第四周期结束时的状态：

° 0: Load’s Mem 4: R-type’s Exec    8: Store’s Reg 12: Beq’s Ifetch

IF/ID
: B

eq
Instruction

ID
/E

x: Store’s busA
&

 B

E
x/M

em
: R

-type’s R
esult

M
em

/W
r: L

oad’s D
out

PC
 = 16 Data

Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

RegWr=? ExtOp=x

Exec
Unit

busA
busB

Imm16

ALUOp=R-type

ALUSrc=0

M
ux

1

0

MemtoReg=?

1
0

RegDst=1

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch=0

1
0

12: Beq’s Ifet 8: Store’s  Reg 4: R-type’s  Exec 0: Load’s  Mem

Clk

MemWr=0
Clk

如果Mem阶段是Branch且
Zero为1，会怎样？

?’s  Wr

Load指
令前某
条指令

Pipeline.38 2009年5月26日星期二

第五周期结束时的状态：

° 0: Lw’s Wr 4: R’s Mem 8: Store’s Exec   12: Beq’s Reg 16: R’s Ifetch

IF/ID
: Instruction @

 16

ID
/E

x: B
eq’sbusA

&
 B

E
x/M

em
: Store’s A

ddress

M
em

/W
r: R

-type’s R
esult

PC
 = 16 Data

Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

RegWr=1 ExtOp=1

Exec
Unit

busA
busB

Imm16

ALUOp=Add

ALUSrc=1

M
ux

1

0

MemtoReg=1

1
0

RegDst=x

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch=0

1
0

16: R’s Ifet 12: Beq’s Reg 8: Store’s  Exec 4: R-type’s  Mem

Clk

MemWr=0
Clk同一周期寄存器有读、有写，可能吗？

利用时钟上升和下降沿两次触发，能做
到前半周期写，后半周期读 寄存器的写口和读口可看成是独立的两个部件！

0: Load’s  
Wr

20

Pipeline.39 2009年5月26日星期二

第六周期结束时的状态：

° 4: R’s Wr 8: Store’s Mem 12: Beq’s Exec   16: R’s Reg 20: R’s Ifet

IF/ID
: Instruction @

 20

ID
/E

x:R
-type’s busA

&
 B

E
x/M

em
: B

eq’sR
esults

M
em

/W
r: N

othing for St

PC
 = 24 Data

Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

RegWr=1 ExtOp=1

Exec
Unit

busA
busB

Imm16

ALUOp=Sub

ALUSrc=0

M
ux

1

0

MemtoReg=0

1
0

RegDst=x

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch=0

1
0

20:R-type’s Ifet 16: R-type’s  Reg 12: Beq’s Exec 8: Store’s  Mem 4: R-type’s  
Wr

Clk

MemWr=1
Clk

Ifetch和Reg两个周期每

条指令执行的都一样！

Pipeline.40 2009年5月26日星期二

第七周期结束时的状态：

° 8: Store’s Wr 12: Beq’s Mem 16: R’s Exec   20: R’s Reg 24: R’s Ifet

IF/ID
: Instruction @

 24

ID
/E

x:R
-type’s busA

&
 B

E
x/M

em
: R

type’sR
esults

M
em

/W
r:N

othing
for B

eq

PC
 = 1000

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

RegWr=0 ExtOp=x

Exec
Unit

busA
busB

Imm16

ALUOp=R-type

ALUSrc=0

M
ux

1

0

MemtoReg=x

1
0

RegDst=1

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch=1

1
0

24:R-type’s Ifet 20: R-type’s  Reg 16: R-type’s  Exec 12: Beq’s Mem 8: Store’s  
Wr

Clk

MemWr=0
Clk

假定相等，

则Zero=1
转移目标地

址送PC!

这里出现反向数据流!
转移目标地址反向送给PC
可能会导致控制冒险！

Pipeline.41 2009年5月26日星期二

总结前面的流水线执行过程

° 回忆刚才的过程，回答以下问题：
• Branch指令何时确定是否转移？转移目标地址在第几周期计算出来？

- 第六周期得到Zero和转移地址、第七周期控制转移地址送到PC输入端、第八周期开始

才能根据转移地址取指令
- 如果Branch指令执行结果是需要转移（称为taken），则流水线会怎样？

• Load指令何时能把数据写到寄存器？第几周期开始写数据？

- 第五周期写入、第六周期开始才能使用
- 如果后面R-Type的操作数是load指令目标寄存器的内容，则流水线怎样？

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem Wr0: Load

Ifetch Reg/Dec Exec Mem Wr4: R-type

Ifetch Reg/Dec Exec Mem Wr8: Store

Ifetch Reg/Dec Exec Mem Wr12: Beq (target is 1000)

Ifetch Reg/Dec Exec Mem Wr16: R-type

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem24: R-type

20: R-type

Ifetch Reg/Dec Exec1000: Target of Br

Pipeline.42 2009年5月26日星期二

转移分支指令(Branch)引起的“延迟”现象

° 虽然Beq指令在第四周期取出，但:
• 目标地址在第七周期才被送到PC的输入端

• 第八周期才能取出目标地址处的指令执行

结果：在取目标指令之前，已有三条指令被取出，取错了三条指令！

° 这种现象称为控制冒险（Control Hazard ）
（注：也称为分支冒险或转移冒险（Branch Hazard） ）

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Clk

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: R-type
Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr24: R-type

12: Beq
(target is 1000)

20: R-type

Ifetch Reg/Dec Exec Mem Wr1000: Target of Br

BACK



Pipeline.43 2009年5月26日星期二

装入指令(Load)引起的“延迟”现象

° 尽管Load指令在第一周期就被取出，但:
• 数据在第五周期结束才被写入寄存器

• 在第六周期时，写入的数据才能被用

结果：在Load指令结果有效前，已经有三条指令被取出

(如果随后的指令要用到Load的数据的话，就需要延迟三条指令才能用！)
° 这种现象被称为 数据冒险 (Data Hazard) 或数据相关(Data Dependency )

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrI0: Load

Ifetch Reg/Dec Exec Mem WrPlus 1

Ifetch Reg/Dec Exec Mem WrPlus 2

Ifetch Reg/Dec Exec Mem WrPlus 3

Ifetch Reg/Dec Exec Mem WrR-Type

Pipeline.44 2009年5月26日星期二

第一讲内容小结

° 指令的执行可以像洗衣服一样，用流水线方式进行

• 均衡时指令吞吐率提高N倍，但不能缩短一条指令的执行时间

• 流水段数以最复杂指令所需步骤数为准（有些指令的某些阶段为空操作），
每个阶段的宽度以最复杂阶段所需时间为准（尽量调整使各阶段均衡）

° 以Load指令为准，分为五个阶段

• 取指令段(IF)
- 取指令、计算PC+4（IUnit：Instruction Memory、Adder）

• 译码/读寄存器(ID/RF)段
- 指令译码、读Rs和Rt（寄存器读口）

• 执行(EXE)段
- 计算转移目标地址、ALU运算（Extender、ALU、Adder）

• 存储器(MEM)段
- 读或写存储单元（Data Memory）

• 写寄存器(Wr)段
- ALU结果或从DM读出数据写到寄存器（寄存器写口）

° 流水线控制器的实现

• IF和ID/RF段不需控制信号控制，只有EXE、MEM和Wr需要

• ID段生成所有控制信号，并随指令的数据同步向后续阶段流动

° 寄存器和存储器的竞争问题可利用时钟信号来解决

° 流水线冒险：结构冒险、控制冒险、数据冒险

（下一讲主要介绍解决流水线冒险的数据通路如何设计）

Pipeline.45 2009年5月26日星期二

第二讲 流水线冒险的处理

° 流水线冒险的几种类型

° 数据冒险的现象和对策

• 数据冒险的种类

- 相关的数据是ALU结果：可以通过转发解决

- 相关的数据是DM读出的内容：随后的指令需被阻塞一个时钟

• 数据冒险和转发

- 转发检测 / 转发控制

• 数据冒险和阻塞

- 阻塞检测 / 阻塞控制

° 控制冒险的现象和对策

• 静态分支预测技术

• 动态分支预测技术

• 缩短分支延迟技术

° 流水线中对异常和中断的处理

° 访问缺失对流水线的影响

主 要 内 容

Pipeline.46 2009年5月26日星期二

° Hazards：指流水线遇到无法正确执行后续指令或执行了不该执行的指令

• Structural hazards (hardware resource conflicts):

现象：同一个部件同时被不同指令所使用

- 一个部件每条指令只能使用1次，且只能在特定周期使用

- 设置多个部件，以避免冲突。如指令存储器IM 和数据存储器DM分开

• Data hazards (data dependencies): 

现象：后面指令用到前面指令结果时，前面指令结果还没产生

- 采用转发(Forwarding/Bypassing)技术

- Load-use冒险需要一次阻塞(stall)

- 编译程序优化指令顺序

• Control (Branch) hazards (changes in program flow): 

现象：转移或异常改变执行流程，顺序执行指令在目标地址产生前已被取出

- 采用静态或动态分支预测

- 编译程序优化指令顺序(实行分支延迟)

总结：流水线的三种冲突/冒险（Hazard）情况

SKIP

Pipeline.47 2009年5月26日星期二

Mem

Structural Hazard（结构冒险）现象

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg

如果只有一个存储器，则在Load指令取数据同时又取指令的话，则发生冲突！

如果不对寄存器堆的写口和读口独立设置的话，则发生冲突！

结构冒险也称为硬件资源冲突：同一个执行部件被多条指令使用。

Pipeline.48 2009年5月26日星期二

Reg

Structural Hazard的解决方法

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UIm Reg Dm

A
L

UIm Reg Dm

A
L

UIm Reg Dm Reg

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

将Instruction Memory (Im) 和 Data Memory (Dm)分开

将寄存器读口和写口独立开来

Im

为了避免结构冒险，规定流水线数据通路中功能部件的设置原则为：
每个部件在特定的阶段被用！（如：ALU总在第三阶段被用！）

Reg

BACK



Pipeline.49 2009年5月26日星期二

Data Hazard现象

add r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or   r8, r1 ,r9

xor r10, r1 ,r11

想一下，哪条指令的r1是老的值？

哪条是新的值？

画出流水线图能很清楚理解！

举例说明：以下指令序列中，寄存器r1会发生数据冒险

读r1时，add指令正在执行加法(EXE)，老值!

读r1时，add指令正在传递加法结果(MEM), 老值!

读r1时，add指令正在写加法结果到r1(WB), 老值!

读r1时，add指令已经把加法结果写到r1, 新值

补充：三类数据冒险现象

RAW:  写后读（基本流水线中经常发生，如上例）

WAR：读后写（基本流水线中不会发生，多个功能部件时会发生）

WAW：写后写（基本流水线中不会发生，多个功能部件时会发生）

本讲介绍基本流水线，所以仅考虑RAW冒险

Pipeline.50 2009年5月26日星期二

Data Hazard on r1

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

最后一条指令的r1才是新的值！ 如何解决这个问题？

Pipeline.51 2009年5月26日星期二

方案1: 在硬件上采取措施，使相关指令延迟执行

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

stall

stall

stall

A
L

UIm Reg Dm

bubble bubble bubble bubbleIm

bubble bubble bubble bubbleIm

bubble bubble bubble bubbleIm

• 硬件上通过阻塞(stall)方式阻止后续指令执行，延迟到有新值以后！

这种做法称为流水线阻塞，也称为“气泡Bubble”

• 缺点：控制相当复杂，需要改数据通路！

Pipeline.52 2009年5月26日星期二

方案 2: 软件上插入无关指令

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

• 最差的做法：由编译器插入三条NOP指令，浪费三条指令的空间和时间

nop

nop

nop

A
L

UIm Reg Dm

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

Pipeline.53 2009年5月26日星期二

方案3:  利用DataPath中的中间数据

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

• 仔细观察后发现：流水段寄存器中已有需要的值r1！

1. 把数据从流水段寄存器中直接取到ALU的输入端

2. 寄存器写/读口分别在前/后半周期，使写入被直接读出

称为转发（Forwading）
或旁路（Bypassing）

在哪个流水段R中？

Pipeline.54 2009年5月26日星期二

M
u
x

Data

ALU

Memory

M
u
x

Zero?

ID/EX EX/MEM MEM/WB

硬件上的改动以支持“转发”技术

• 加MUX，使流水段寄存器值返送ALU输入端

• 假定流水段寄存器能读出新写入的值 (否则，需要更多的转发数据)

add r3, r2, r1

Sub r5, r3, r4

add r3, r2, r1

Or r6, r2, r1

Sub r5, r3, r4

lw r3, 100(r1)

Or r6, r2, r1

Sub r5, r3, r4

lw r3, 100(r1)

Or r6, r3, r1

Sub r5, r3, r4

如果指令序列为： 能用“转发”技术解决
第1、2两条指令间的

数据冒险吗？

请看后面的幻灯片！

Ex Mem



Pipeline.55 2009年5月26日星期二

复习: Load指令引起的延迟现象

° Load指令最早在哪个流水线寄存器中开始有后续指令需要的值？

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrI0: Load

Ifetch Reg/Dec Exec Mem WrPlus 1

Ifetch Reg/Dec Exec Mem WrPlus 2

Ifetch Reg/Dec Exec Mem WrPlus 3

Ifetch Reg/Dec Exec Mem WrPlus 4

实际上，在第四周期结束时，数据在流水段寄存器中已经有值。

采用数据转发技术可以使load指令后面第二条指令得到所需的值

但不能解决load指令和随后的第一条指令间的数据冒险，要延迟执行一条指令！

这种load指令和随后指令间的数据冒险，称为“装入- 使用数据冒险(load- use Data Hazard)”

若不采用转发，则在何时才

能用使用Load指令的结果？

Pipeline.56 2009年5月26日星期二

“Forwarding”技术使Load-use冒险只需延迟一个周期

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r7,r1,r3

and r6,r1,r7

or   r8,r1,r9

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

采用“转发”后仅第二条指令 SUB r7,r1,r3 不能按时执行！需要阻塞一个周期。

发生“装入- 使用数据冒险”时，需要对load后的指令阻塞一个时钟周期！

BACK

Pipeline.57 2009年5月26日星期二

方案1: 硬件阻止指令执行来解决load-use

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

stall bubble bubble bubble bubbleIm

and r6,r1,r7

or   r8,r1,r9

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

用硬件阻塞一个周期（指令被重复执行一次）

Pipeline.58 2009年5月26日星期二

方案2: 软件上插入NOP指令来解决load-use

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WB

•用软件插入一条NOP指令！（有些处理器不支持硬件阻塞处理）

例如：MIPS 1 处理器没有硬件阻塞处理，而由编译器（或汇编程序员） 来处理。

nop

and r6,r1,r7

or   r8,r1,r9

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Pipeline.59 2009年5月26日星期二

以下源程序可生成两种不同的代码，优化的代码可避免Load阻塞

a = b + c;
d = e – f;

假定 a, b, c, d ,e, f 在内存

方案3：编译器进行指令顺序调整来解决load-use

Fast code:
lw $2, b
lw $3, c
lw $5, e 
add $1, $2, $3
lw $6, f
sw a, $1 
sub $4, $5, $6
sw d, $4

Slow code:
lw $2, b
lw $3, c
add $1, $2, $3
sw a, $1 
lw $5, e
lw $6, f
sub $4, $5, $6
sw d, $4

调整后

编译器的优化很重要！

Pipeline.60 2009年5月26日星期二

编译器优化以避免阻塞的情况调查:

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

由此可见，优化调度后load阻塞现象大约降低了1/2~1/3



Pipeline.61 2009年5月26日星期二

数据冒险的解决方法

° 方法1：硬件阻塞（stall）
° 方法2：软件插入“NOP”指令

° 方法3：编译优化：调整指令顺序，能解决所有数据冒险吗？

° 方法4：合理实现寄存器堆的读/写操作，能解决所有数据冒险吗？

• 前半时钟周期写，后半时钟周期读

• 若同一个时钟内，前面指令写入数据正好是后面指令所读数据，则不会发生

数据冒险

° 方法5：转发（Forwarding或Bypassing 旁路）技术，能解决所有数据冒险吗？

- 若相关数据是ALU结果，则如何？

可通过转发解决

- 若相关数据是上条指令DM读出内容，则如何？

不能通过转发解决，随后指令需被阻塞一个时钟 或 加NOP指令

实现“转发”或“阻塞延迟” 要修改数据通路：

（1）检测何时需要“转发” ，并控制实现“转发”
（2）检测何时需要“阻塞”，并控制实现“阻塞”

称为Load-use数据冒险！

Pipeline.62 2009年5月26日星期二

M
u
x

Data

ALU

Memory

M
u
x

Zero?

ID/EX EX/MEM MEM/WB

RAW（写后读）数据冒险的“转发”条件

后面指令需用ALU输出结果

C1: 目寄是后一条指令的源寄

C2: 目寄是后第二条指令的源寄

(例如：R-Type后跟R- / lw / sw / beq等)
后面指令需用从DM读出的结果

C3: 目寄是后第二指令的源寄

(例如：load指令后跟R-Type / beq等)

用流水段寄存器来表示转发条件（C3以后考虑）

C1(a): EX/MEM. RegisterRd=ID/EX. RegisterRs
C1(b): EX/MEM. RegisterRd=ID/EX. RegisterRt
C2(a): MEM/WB. RegisterRd=ID/EX. RegisterRs
C2(b): MEM/WB. RegisterRd=ID/EX. RegisterRt

这里的RegisterRd是指目的寄存器

实际上是R-type的Rd 或 I-Type的rt

ori r3, r2, 100
sub r5, r3, r4

C1

add r3, r2, r1
or r6, r2, r1
sub r5, r3, r4

C2

lw r3, 100(r1)
or r6, r2, r1
sub r5, r3, r4

C3
Ex Mem

Pipeline.63 2009年5月26日星期二

指令的回写（Write Back）阶段

IF/ID
: ID

/E
x R

egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

PC

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr=1 ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg=1/0

1
0

RegDst

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Clk
Ifetch Reg/Dec Exec Mem Wr

Rd还是Rt取决于是R-型
指令，还是I-型指令！

若是beq指令会怎样

？

beq r3, r2, 100
sub r5, r3, r2

因为beq指令没有写结果，不能进行转发！

Pipeline.64 2009年5月26日星期二

转发条件的进一步完善

° 以下两种情况下，根据前面的转发条件转发会发生错误

• 指令的结果不写入目的寄存器Rd时
- 例如，Beq指令只对rs和rt相减，不写结果到目的寄存器

- 即：EX / MEM 或 MEM / WB 流水段寄存器的RegWrite信号为0
• Rd等于$0时

- 例如，指令 sll $0, $1, 2 的转发结果为(R[$1]<<2) ，但实际上应该是0
° 因此，修改转发条件为：

• C1(a): EX/MEM.RegWrite
and EX/MEM. RegisterRd ≠ 0
and  EX/MEM. RegisterRd=ID/EX. RegisterRs

• C1(b): EX/MEM.RegWrite
and EX/MEM. RegisterRd ≠ 0
and EX/MEM. RegisterRd=ID/EX. RegisterRt

• C2(a): MEM/WB.RegWrite
and MEM/WB. RegisterRd ≠ 0
and MEM/WB. RegisterRd=ID/EX. RegisterRs

• C2(b): MEM/WB.RegWrite
and MEM/WB. RegisterRd ≠ 0
and MEM/WB. RegisterRd=ID/EX. RegisterRt

beq r3, r2, 100
sub r5, r3, r2

Pipeline.65 2009年5月26日星期二

M
u
x

Data

ALU

Memory

M
u
x

Zero?

ID/EX EX/MEM MEM/WB

转发路径和转发条件

• 加MUX，使流水段寄存器值返送ALU输入端

C1(a)

C1(b)

C2(a)

C2(b)

C1(a)和C1(b)可以合并为一个条件C1 ，并把转发线合一起后同时送A口和B口

即：C1=C1(a) or C1(b)，同样：C2=C2(a) or C2(b)，转发线合起来

实际上红线和兰线可以合并，而且在原数据通路中是合并在一起的。记得吗？

由一个二路选择器（控制端为MemtoReg）合并输出到寄存器堆！

C3

所以不需另外有一个检测条件C3!

C1反映的是

本条指令和
随后指令间
的相关关系

C2反映的是

本条指令和
随后第二条
指令间的相
关关系

C1和C2分别反映的是哪两条指令的相关关系呢？

Ex Mem

Pipeline.66 2009年5月26日星期二

转发路径和转发条件

C2

C1

ForwardA (ForwardB) =
01  当c2=1时
10  当c1=1时

C1: EX/MEM.RegWrite and EX/MEM. RegisterRd ≠ 0 
and  (EX/MEM. RegisterRd=ID/EX. RegisterRs or EX/MEM. RegisterRd=ID/EX. RegisterRt

C2: MEM/WB.RegWrite and MEM/WB. RegisterRd ≠ 0 
and  (MEM/WB. RegisterRd=ID/EX. RegisterRs or MEM/WB. RegisterRd=ID/EX. RegisterRt

“转发检测”部件
中缺何条件？



Pipeline.67 2009年5月26日星期二

带转发的流水线数据通路

ForwardA

ForwardB

C2: MEM/WB.RegWrite and MEM/WB. RegisterRd ≠ 0 
and  (MEM/WB. RegisterRd=ID/EX. RegisterRs or MEM/WB. RegisterRd=ID/EX. RegisterRt

C1: EX/MEM.RegWrite and EX/MEM. RegisterRd ≠ 0 
and  (EX/MEM. RegisterRd=ID/EX. RegisterRs or EX/MEM. RegisterRd=ID/EX. RegisterRt

ForwardA (ForwardB) =
01  当c2=1时
10  当c1=1时

BACK

Pipeline.68 2009年5月26日星期二

更加复杂的数据冒险问题

° 考察以下指令序列，采用前述转发条件会发生什么情况？

add $1, $1, $2
add $1, $1, $3
add $1, $1, $4
……
可能会使转发到第3条指令的操作数是第1条指令结果，而不是第2条指令的结果！

怎样改写“转发”检测条件：改C1还是改C2? 

° 需要改写“转发”条件C2为：

MEM/WB.RegWrite
and MEM/WB.RegisterRd ≠ 0 
and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs or EX/MEM.RegisterRd ≠ ID/EX.RegisterRt)
and  (MEM/WB.RegisterRd=ID/EX.RegisterRs or   MEM/WB.RegisterRd=ID/EX.RegisterRt)

上述公式相当于加了一个条件限制：

如果本条指令源操作数和上条指令的目的寄存器一样，则不转发上上条指令的结果，

而转发上条指令的结果（即：此时的C1=1而C2=0）

至此，解决了RAW数据冒险的“转发”处理

对于左边的指令序列，C1和C2的值各是什么？

C1=C2=1,  使得Forward信号取值不确定！

ForwardA (ForwardB) =
01  当c2=1时
10  当c1=1时

本条指令

应该让C1=1,C2=0!

BACK

Pipeline.69 2009年5月26日星期二

Load-use Data Hazard（硬件阻塞方式）

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

Im

and r6,r1,r7

or   r8,r1,r9

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

检测点

需解决以下问题：

(1) 判断什么条件下需要阻塞

阻塞点

Reg

ID/EX.MemRead
and  (ID/EX.RegisterRt=IF/ID.RegisterRs

or   ID/EX.RegisterRt=IF/ID.RegisterRt)

前面指令为Load 并且

前面指令的目的寄存器等于当
前刚取出指令的源寄存器

(2) 如何修改数据通路来实现阻塞

bubble bubble bubblesub r4,r1,r3

Pipeline.70 2009年5月26日星期二

Load-use Data Hazard（硬件阻塞方式）

Time (clock cycles)

IF ID EX MEM WB

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

检测点

阻塞点

检测“阻塞”过程中：

1) sub指令在IF/ID段寄存器中，并正被译码/取数，控制信号和Rs/Rt的值将被写到ID/EX段寄存器

2) and指令地址在PC中，正被取出，取出的指令将被写到IF/ID段寄存器中

在阻塞点，必须将上述两条指令的执行结果清除，并延迟一个周期执行这两条指令

阻塞前的情况：

延迟一个周期执行后面的指令，相当于把阻塞点前面一个周期的状态再保持一个周期

lw指令还是继续正常执行下去
想想看，如何做到继续保持状态？

Pipeline.71 2009年5月26日星期二

Load-use Data Hazard（硬件阻塞方式）

在阻塞点，必须将上述两条指令的执行结果清除，并延迟一个周期执行这两条指令

① 将ID/EX段寄存器中所有控制信号清0    

② IF/ID寄存器中的信息不变，sub指令重新译码执行

③ PC中的值不变，and指令重新被取出执行

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

Im

and r6,r1,r7

or   r8,r1,r9

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

检测点

阻塞点

Reg bubble bubble bubblesub r4,r1,r3

阻塞后的情况：

Pipeline.72 2009年5月26日星期二

带“转发”和“阻塞”检测的流水线数据通路

至此，数据冒险的
处理全部完成！

ID/EX.MemRead
and  (ID/EX.RegisterRt=IF/ID.RegisterRs

or   ID/EX.RegisterRt=IF/ID.RegisterRt)

“写使能”
信号为0，
使PC和
IF/ID不变

使控制信号
清0，阻塞

随后指令！

①

②

③

0

BACK



Pipeline.73 2009年5月26日星期二

Control Hazard的解决方法

° 方法1：硬件上阻塞（stall）分支指令后三条指令的执行

• 使后面三条指令清0或 其操作信号清0，以插入三条NOP指令

° 方法2：软件上插入三条“NOP”指令

（以上两种方法的效率太低，需结合分支预测进行）

° 方法3：分支预测（Predict）
• 简单（静态）预测：

- 总是预测条件不满足(not taken)，即：继续执行分支指令的后续指令

可加启发式规则：在特定情况下总是预测满足(taken)，其他情况总是预测不满足。

如：循环顶（底）部分支总是预测为不满足（满足）。能达65%-85%的预测准确率

• 动态预测：

- 根据程序执行的历史情况，进行动态预测调整，能达90%的预测准确率

注：采用分支预测方式时，流水线控制必须确保错误预测指令的执行结果不能生

效，而且要能从正确的分支地址处重新启动流水线工作

° 方法4：延迟分支（Delayed branch）（通过编译程序优化指令顺序！）

• 把分支指令前面与分支指令无关的指令调到分支指令后面执行，也称延迟转移

另一种控制冒险：异常或中断控制冒险的处理

Pipeline.74 2009年5月26日星期二

简单（静态）分支预测方法

° 基本做法

• 总预测条件不满足(not taken)，即：继续执行分支指令的后续指令

可加启发式规则：

在特定情况下总是预测满足(taken)，其他情况总是预测不满足

• 预测失败时，需把流水线中三条错误预测指令丢弃掉

- 将三条丢弃指令的控制信号值设置为0，使其后续过程中执行nop操作

（注：涉及到当时在IF、ID和EX三个阶段的指令）

° 性能

• 如果转移概率是50%，则预测正确率仅有50%

° 预测错误的代价

• 预测错误的代价与何时能确定是否转移有关。越早确定代价越少

• 可以把“是否转移”的确定工作提前，而不要等到MEM阶段才确定

SKIP那最早可以提前到哪个阶段呢？

Pipeline.75 2009年5月26日星期二

复习: Control Hazard现象

° 虽然Beq指令在第四周期取出，但:
• “是否转移”在Mem阶段确定，目标地址在第七周期才被送到PC输入端

• 第八周期才取出目标地址处的指令执行

结果：在取目标指令之前，已有三条指令被取出，取错了三条指令！

° 发生转移时，要在流水线中清除Beq后面的三条指令，分别在EXE 、ID、 IF段中

° 延迟损失时间片C：发生转移时，给流水线带来的延迟损失

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: R-type

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr24: R-type

12: Beq
(target is 1000)

20: R-type

Clk

Ifetch Reg/Dec Exec Mem Wr1000: Target of Br

BACK
这里 C=3

Pipeline.76 2009年5月26日星期二

简单（静态）分支预测方法

° 缩短分支延迟，减少错误预测代价

• 可以通过调整“转移地址计算”和“分支条件判断”操作到ID阶段来缩短延迟

- 将转移地址生成从MEM阶段移到ID阶段，可以吗？为什么？

（是可能的：IF/ID流水段寄存器中已经有PC的值和立即数）

- 将“判0”操作从EX阶段移到ID阶段，可以吗？为什么？

（用逻辑运算(如，先按位异或，再结果各位相或)来直接比较Rs和Rt的值）

（简单判断用逻辑运算，复杂判断可以用专门指令生成条件码）

（许多条件判断都很简单）

° 预测错误的检测和处理（称为“冲刷、冲洗” -- Flush）
• 当Branch=1并且Zero=1时，发生转移（taken）
• 增加控制信号：IF.Flush=Branch and Zero，取值为1时，说明预测失败

• 预测失败(条件满足)时，完成以下两件事（延迟损失时间片C=1时）：

① 将转移目标地址->PC
② 清除IF段中取出的指令，即：将IF/ID中的指令字清0，转变为nop指令

原来要清除三条指令，调整后只需要清除一条指令，因而只延迟一个时钟周期
，每次预测错误减少了两个周期的代价！

Pipeline.77 2009年5月26日星期二

带静态分支预测处理的数据通路

IF.Flush=Branch and Zero 40#指令 beq $1,$3, 7的ID阶段

若$1或$3和前面指令数据相关，会怎么样？

• 上上条指令的EXE段结果可转发回来进行判断

• 上条指令的EXE段结果来不及转发回来，引起1次阻塞!

将IF/ID中指令字清0，变为nop指令

控制转移

目标地址->PC

转移目标地址

(72)->PC

需重新改“转发”条件和转发线路！

作业中有相应的练习

sub $3, $5, $1 
add $1, $5, $2
beq $1, $3, 7

BACK
Pipeline.78 2009年5月26日星期二

动态分支预测方法

° 简单的静态分支预测方法的预测成功率不高，应考虑动态预测

° 动态预测基本思想：

• 利用最近转移发生的情况，来预测下一次可能发生的转移

• 预测后，在实际发生时验证并调整预测

• 转移发生的历史情况记录在BHT中（有多个不同的名称）

- 分支历史记录表BHT（Branch History Table）

- 分支预测缓冲BPB（Branch Prediction Buffer）

- 分支目标缓冲BTB（Branch Target Buffer）

• 每个表项由分支指令地址的低位索引，故在IF阶段就可以取到预测位

- 低位地址相同的分支指令共享一个表项，所以，可能取的是其他分支

指令的预测位。会不会有问题？

- 由于仅用于预测，所以不影响执行结果

现在几乎所有的处理器都采用动态预测（dynamic predictor）



Pipeline.79 2009年5月26日星期二

分支历史记录表BHT（或BTB、BPB）

指令预取器

分支指令地址 转移目标地址预测位

分支
指令
地址

控制逻辑

指令执行

实际执行情况

命中与否

加入新项

顺序取转移取

分支历史记录表BHT

=？

查找①

选择③

②预测④ 修正

查找时发现都不相
等，则“未命中”

未命中说明什么？

说明以前没有执
行过该分支指令

命中时：
根据预测位，选择“转移取”还是“顺序取”

未命中时：
加入新项，并填入指令地址和转移目标地址、初始化预测位

Pipeline.80 2009年5月26日星期二

动态预测基本方法

° 采用一位预测位：总是按上次实际发生的情况来预测下次

• 1表示最近一次发生过转移（taken），0表示未发生（not taken）
• 预测时，若为1，则预测下次taken，若为0，则预测下次not taken
• 实际执行时，若预测错，则该位取反，否则，该位不变

• 可用一个简单的预测状态图表示

• 缺点：当连续两次的分支情况发生改变时，预测错误

- 例如，循环迭代分支时，第一次和最后一次会发生预测错误，因为

循环的第一次和最后一次都会改变分支情况，而在循环中间的各次

总是会发生分支，按上次的实际情况预测时，都不会错。

° 采用二位预测位

• 用2位组合四种情况来表示预测和实际转移情况

• 按照预测状态图进行预测和调整

• 在连续两次分支发生不同时，只会有一次预测错误

采用比较多的是二位预测位，也有采用二位以上预测位。
如：Pentium 4 的BTB2采用4位预测位

BACK

Pipeline.81 2009年5月26日星期二

一位预测状态图

° 指令预取时，按照预测读取相应分支的指令

• 预测发生时，选择“转移取”

• 预测不发生时，选择“顺序取”

° 指令执行时，按实际执行结果修改预测位

• 对照状态转换图来进行修改

• 例如：对于一个循环分支

– 若初始状态为0(再次循环时为0)，则第一次和

最后一次都错

– 若初始状态为1，则只有最后一次会错

预测发生

发
生

不发生

预测不发生

不发生

发生1 0

正确

错误

错误

正确

Loop: add $7, $3, $3      ; i*2           
add $7, $7, $7 ; i*4
add $7, $7, $5
lw $6, 0($7) ; $6=A[i]
add $1, $1, $6 ; g= g+A[i]
add $3, $3, $4
bne $3, $2, Loop

… …

Loop: g = g +A[i];
i = i+ j;
if (i != h) go to Loop:

Assuming variables g, h, i, j  ~ 
$1, $2, $3, $4 and base address
of array is in $5

即：只要本次和上次的发生情况不同，就会出现一次预测错误。
BACK

Pipeline.82 2009年5月26日星期二

两位预测状态图

° 基本思想：只有两次预测错误才改变预测方向

• 00状态时预测发生（强转移），实际不发生时，转到状态01（弱转移），下次仍预测

为发生，如果再次预测错误（实际不发生），才使下次预测调整为不发生11
° 好处：连续两次发生不同的分支情况时，可能会预测正确

• 例如，对于循环分支的预测

- 第一次：初始态为00（再次循环时状态为01），预测发生，实际也发生，正确

- 中间：状态为“00”，预测发生，实际也发生，正确

- 最后一次：状态为“00”，预测发生，但实际不发生，错

BACK

预测发生

发生

预测不发生

不发生

预测发生

预测不发生

发生

不发生

发生

不发生

发生

不发生

00 01

10 11

正确
错误

正确

错误

正确

正确

错误

错误

预测发生时，选择“转移取”
预测不发生时，选择“顺序取”

Loop: add $7, $3, $3      ; i*2           
add $7, $7, $7 ; i*4
add $7, $7, $5
lw $6, 0($7) ; $6=A[i]
add $1, $1, $6 ; g= g+A[i]
add $3, $3, $4
bne $3, $2, Loop

… …

Pipeline.83 2009年5月26日星期二

分支延迟时间片的调度

° 属于静态调度技术，由编译程序重排指令顺序来实现

° 基本思想：

• 把分支指令前面的与分支指令无关的指令调到分支指令后面执行，以填充延

迟时间片（也称分支延迟槽Branch Delay slot），不够时用nop操作填充

举例：如何对以下程序段进行分支延迟调度？

（假定时间片为2）

调度后，降低了分支延迟损失

lw $3, 0($2)
add  $6, $4, $2
beq $3, $5, 2
lw $1, 0($2)
add $3, $3,$2
sw $1, 0($2)

……

lw $1, 0($2)
lw $3, 0($2)
add  $6, $4, $2
beq $3, $5, 2
add $3, $3,$2
sw $1, 0($2)

……

调度后可能带来其他问题：产生新的
load-use数据冒险

BACK

若分支条件判断和目标地址计算提前到
ID阶段，则分支延迟时间片减少为1

调度后

lw $3, 0($2)
add  $6, $4, $2
beq $3, $5, 2
lw $1, 0($2)
nop
add $3, $3,$2
sw $1, 0($2) 

Pipeline.84 2009年5月26日星期二

另一种控制冒险：异常和中断

° 异常和中断会改变程序的执行流程

° 某条指令发现异常时，后面多条指令已被取到流水线中正在执行

• 例如ALU指令发现“溢出”时，已经到EX阶段结束了，此时，它后面
已有两条指令进入流水线了

° 流水线数据通路如何处理异常? (举例说明)
• 假设指令add r1,r2,r3产生了溢出

（记住：MIPS异常处理程序的首地址为0x8000 0180）
• 处理思路：

清除add指令以及后面的所有已在流水线中的指令

保存PC或PC+4 到 EPC
从0x8000 0180处开始取指令



Pipeline.85 2009年5月26日星期二

异常的处理

° 异常（溢出）在第一条指令的EXE阶段被检出

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r2,r3

and r6,r1,r4

IF ID/RF EX MEM WBA
L

UIm Reg

Im Reg Dm Reg

A
L

U

bubble bubble bubbleIm

bubble bubble bubble bubbleIm

Im异常处理程序首指令

Reg

阻塞点

Reg

A
L

U Dm

bubble bubble bubble

异常处理：
• IF.Flush使IF段指令在IF/ID寄存器中清为0，变成nop指令
• ID.Flush与数据冒险阻塞检测信号相或(or)后，使ID段指令

的控制信号清0
• EX.Flush使EX段指令的控制信号清0
• 将0x8000 0180作为PC的一个输入，并控制PC输入端的多路

选择器
• 将断点（可能是PC、可能是PC+4）保存到EPC中

即：0x80000180处指令

会发生将溢出结果写到寄
存器r1中去的情况吗？

不会！EX.Flush使EXE段指令的控制
信号清0（主要保证RegWr清0），避
免了在WB阶段写寄存器r1的情况。

Pipeline.86 2009年5月26日星期二

带异常处理的流水线数据通路

Overflow

80000180H

Pipeline.87 2009年5月26日星期二

流水线方式下的异常处理的难点问题
° 流水线中有5条指令，到底是哪一条发生异常？

• 根据异常发生的流水段可确定是哪条指令，因为各类异常发生的流水段不同

“溢出”在EXE段检出

“无效指令”在ID段检出

“除数为0”在ID段段检出

“无效指令地址”在IF段检出

“无效数据地址”在Load/Store指令的EXE段检出

° 外部中断与特定指令无关，如何确定处理点？

• 可在IF段或WB段中进行中断查询，需要保证当前WB段的指令能正确完成，并在有

中断发生时，确保下个时钟开始执行中断服务程序

° 检测到异常时，指令已经取出多条，当前PC的值已不是断点，怎么办？

• 指令地址（哪条？）存放在流水段R，可把这个地址送到EPC保存，以实现精确中断

（非精确中断不能提供准确的断点，而由操作系统来确定哪条指令发生了异常）

° 一个时钟周期内可能有多个异常，该先处理哪个？

• 检出异常存到专门寄存器，并送优先级排队器或在中断查询程序中按顺序查询

° 系统中只有一个EPC，多个中断发生时，一个EPC不够放多个断点，怎么办？

• 总是把优先级最高的送到EPC中

° 在异常处理过程中，又发生了新的异常或中断，怎么办？

• 利用中断屏蔽和中断嵌套机制来处理

后面三个问题在第九章中详细介绍！

Pipeline.88 2009年5月26日星期二

复习：Cache 的操作过程

如果被访问的信息
不在cache中，称
为失效(miss)

如果被
访问的
信息在
cache
中，称
为命中
(hit)

缺失处理

硬件如何进行缺失处理？

Pipeline.89 2009年5月26日星期二

Cache缺失处理会引起流水线阻塞（停顿）

° 在使用Cache的系统中，数据通路中的IM和DM分别是Code Cache和Data Cache
° CPU执行指令过程中，取指令或取数据时，如果发生缺失，则指令执行被阻塞

° Cache缺失的检测（如何进行的？记得吗？）

• Cache中有相应的检测线路（地址高位与Cache标志比较）

° 阻塞处理过程

• 冻结所有临时寄存器和程序员可见寄存器的内容（即：使整个计算机阻塞）

• 由一个单独的控制器处理Cache缺失，其过程 (假定是指令缺失) 还记得吗？：

- 把发生缺失的指令地址（PC- 4）所在的主存块首址送到主存

- 启动一次“主存块读”操作，并等待主存完成一个主存块(Cache行)的读操作

- 把读出的一个主存块写到Cache对应表项的数据区

（若对应表项全满的话，还要考虑淘汰掉一个已在Cache中的主存块）

- 把地址高位部分（标记）写到Cache的“tag”字段，并置“有效位”
- 重新执行指令的第一步：“取指令”

• 若是读数据缺失，其处理过程和指令缺失类似

- 从主存读出数据后，从“取数”那一步开始重新执行就可以了

• 若是写数据缺失，则要考虑用哪种“写策略”解决“一致性”问题

° 比数据相关或分支指令引起的流水线阻塞简单：只要保持所有寄存器不变

° 与中断引起的阻塞处理不同：不需要程序切换

Pipeline.90 2009年5月26日星期二

TLB缺失和缺页也会引起流水线阻塞

° TLB缺失处理

• 当TLB中没有一项的虚页号与要找的虚页号相等时，发生TLB miss
• TLB miss说明可能发生以下两种情况之一：

- 页在内存中：只要把主存中的页表项装载到TLB中

- 页不在内存中(缺页)：OS从磁盘调入一页，并更新主存页表和TLB
° 缺页（page fault）处理

• 当主存页表的页表项中“valid”位为“0”时，发生page fault
• Page fault是一种“故障”异常，按以下过程处理（MIPS异常处理）

- 在Cause寄存器置相应位为“1”
- 发生缺页的指令地址（PC- 4）送EPC
- 0x8000 0180(异常查询程序入口)送PC

– 执行OS的异常查询程序，取出Cause寄存器中相应的位分析，得知发生了“缺
页”，转到“缺页处理程序”执行

• page fault一定要在发生缺失的存储器操作时钟周期内捕获到，并在下个时钟转到异常

处理，否则，会发生错误。

- 例：lw $1, 0($1) ，若没有及时捕获“异常”而使$1改变，则再重新执行该指令时，

所读的内存单元地址被改变，发生严重错误！

处理Cache缺失和缺页的不同之处在哪里？ 哪种要进行程序切换？



Pipeline.91 2009年5月26日星期二

（缺页）异常处理时要考虑的一些细节

° 缺页异常结束后，回到哪里继续执行？

• 指令缺页：重新执行发生缺页的指令

• 数据缺页：

- 简单指令（仅一次访存）：强迫指令结束，重新执行缺页指令

- 复杂指令（多次访存）：可能会发生多次缺页，指令被中止在中间某

个阶段，缺页处理后，从中间阶段继续执行；因而，需要能够保存和

恢复中间机器状态

° 异常发生后，又发生新的异常，怎么办？

• 在发现异常、转到异常处理程序中，若在保存正在运行进程的状态时又发

生新的异常，则因为要处理新的异常，会把原来进程的状态和保存的返回

断点破坏掉，所以，应该有一种机制来“禁止”响应新的异常处理

• 通过“中断/异常允许”状态位（或“中断/异常允许”触发器）来实现

• “中断/异常允许”状态位置1，则“开中断”（允许异常），清0则“关中断 ”
（ 禁止异常）

• OS通过管态指令来设置该位的状态

Pipeline.92 2009年5月26日星期二

三种处理器实现方式的比较

° 单周期、多周期、流水线三种方式比较

假设各主要功能单元的操作时间为：

• 存储单元：200ps
• ALU和加法器：100ps
• 寄存器堆（读 / 写）：50ps
假设MUX、控制单元、PC、扩展器和传输线路都没有延迟，指令组成为：

25%取数、10%存数、52%ALU、11%分支、2%跳转

则下面实现方式中，哪个更快？快多少？

（1）单周期方式：每条指令在一个固定长度的时钟周期内完成

（2）多周期方式：每类指令时钟数:取数-5，存数-4，ALU-4，分支-3，跳转-3
（3）流水线方式：每条指令分取指令、取数/译码、执行、存储器存取、写回五阶段

（假定没有结构冒险，数据冒险采用转发处理，分支延迟槽为1，预测准确率

为75%；不考虑异常、中断和访问缺失引起的流水线冒险）

Pipeline.93 2009年5月26日星期二

三种处理器实现方式的比较

解：CPU执行时间=指令条数 x CPI x 时钟周期长度

三种方式的指令条数都一样，所以只要比较CPI和时钟周期长度即可。

各指令类型要求的时间长度为：

Pipeline.94 2009年5月26日星期二

三种处理器实现方式的比较

对于单周期方式：

时钟周期将由最长指令来决定，应该是load指令，为600ps
所以，N条指令的执行时间为600N(ps)

对于多周期方式：

时钟周期将取功能部件最长所需时间，应该是存取操作，为200ps
根据各类指令的频度，计算平均时钟周期数为：

CPU时钟周期=5x25%+4x10%+4x52%+3x11%+3x2%=4.12
所以， N条指令的执行时间为4.12x200xN=824N(ps)

对于流水线方式：

Load指令：当发生Load-use依赖时，执行时间为2个时钟，否则1个时钟，故平均

执行时间为1.5个时钟；

Store、ALU指令：1个时钟；

Branch指令：预测成功时，1个时钟，预测错误时，2个时钟，

所以：平均约为：.75x1+.25x2=1.25个；

Jump指令：2个时钟（总要等到译码阶段结束才能得到转移地址）

平均CPI为：1.5x25%+1x10%+1x52%+1.25x11%+2x2%=1.17
所以， N条指令的执行时间为1.17x200xN=234N(ps)

Pipeline.95 2009年5月26日星期二

流水线冒险对程序性能的影响

° 结构冒险对浮点运算的性能影响较大，因为浮点运算单元不能有效被流水

化，可能造成运算单元的资源冲突

° 控制冒险更多出现在整数运算程序中，因为分支指令对应于循环或选择结

构，大多由整数运算结果决定分支

° 数据冒险在整数运算程序和浮点运算程序中都一样

• 浮点程序中的数据冒险容易通过编译器优化调度来解决

- 分支指令少

- 数据访问模式较规则

• 整数程序的数据冒险不容易通过编译优化调度解决

- 分支指令多

- 数据访问模式不规则

- 过多使用指针

Pipeline.96 2009年5月26日星期二

第二讲小结

° 流水线冒险的几种类型：

• 资源冲突、数据相关、控制相关（改变指令流的执行方向）

° 数据冒险的现象和对策

• 数据冒险的种类

- 相关的数据是ALU结果，可以通过转发解决

- 相关的数据是DM读出的内容，随后的指令需被阻塞一个时钟

• 数据冒险和转发

- 转发检测 / 转发控制

• 数据冒险和阻塞

- 阻塞检测 / 阻塞控制

° 控制冒险的现象和对策

• 静态分支预测技术

• 缩短分支延迟技术

• 动态分支预测技术

° 异常和中断是一种特殊的控制冒险

° 访存缺失（Cache缺失、TLB缺失、缺页）会引起流水线阻塞



Pipeline.97 2009年5月26日星期二

第三讲 高级流水线技术
° 高性能流水线 - 指令级并行(ILP)技术

• 超流水线
• 多发射流水线

- 静态多发射（VLIW处理器+编译器静态调度）
- 动态多发射（超标量处理器+动态流水线调度）

° 静态多发射（VLIW-超长指令字）

• 编译器静态推测完成“指令打包”和“冒险处理”
• MIPS 2-发射流水线数据通路

• 循环展开指令调度

• IA-64的EPIC技术

° 动态多发射

• 动态多发射流水线的通用模型

• 动态多发射流水线的执行模式

- 按序发射、按序完成

- 按序发射、无序完成

- 无序发射、无序完成

• Pentium 4 动态多发射流水线

- 超流水、超标量、动态调度、无序发射、无序完成
Pipeline.98 2009年5月26日星期二

提高性能措施—实现指令级并行

° 流水线实现了指令流内部的并行，这种并行称为指令级并行（ILP）
° 有两种指令级并行策略

• 超流水线（Super- pipelining）
- 级数更多的流水线

- 理想情况下，流水线的加速比与流水段的数目成正比

（即：理想情况下，流水段越多，时钟周期越短，指令吞吐率越高）

但是，它是有极限的！可以怎样突破极限呢？

• 多发射流水线（Multiple issue pipelining ）
- 多条指令(如整数运算、浮点运算、装入/存储等) 同时启动并独立运行

- 前提：有多个执行部件。如：定点、浮点、乘/除、取数/存数部件等

- 结果：能达到小于1的CPI，定义CPI的倒数为IPC
（例如：四路多发射流水线的理想IPC为4）
- 需要实现以下两个主要任务

▫ 指令打包：分析每个周期发射多少条？哪些指令可以同时发射？

▫ 冒险处理：由编译器静态调整指令或在运行时由硬件处理

- 实现上述两个主要任务的基础—推测技术

- 两种实现方法

▫ 静态多发射：由编译器在编译时静态完成指令打包或冒险处理

▫ 动态多发射：由硬件在执行时动态完成指令打包或冒险处理

CPI=？ CPI=1

Pipeline.99 2009年5月26日星期二

实现多发射技术的基础—推测

° 推测技术：由编译器或处理器猜测指令执行结果，并以此来调整指令执行顺序，
使指令的执行能达到最大可能的并行

• 指令打包的决策依赖于“推测”的结果

- 可根据指令间的相关性来进行推测

◦ 与前面指令不相关的指令可以提前执行

- 可对分支指令进行推测

◦ 可提前执行分支目标处的指令

- 预测仅是“猜测”，有可能推测错误，故需有推测错误检测和回滚机制

- 推测错误时，会增加额外开销

• 有“软件推测”和“硬件推测”两种

- 软件推测：编译器通过推测来静态重排指令（一定要正确！）

- 硬件推测：处理器在运行时通过推测来动态调度指令

BACK

Pipeline.100 2009年5月26日星期二

静态多发射处理器

° 由编译器在编译时，进行相关性分析和静态分支预测，以静态完成“指令打包”或“冒险处理”

• 指令打包（将同时发射的多条指令合并到一个长指令中）

- 将一个周期内发射的多个指令看成一条多个操作的长指令，称为一个“发射包”

- “静态多发射”最初被称为“超长指令字”（VLIW-Very Long Instruction Word）
，采用这种技术的处理器被称为VLIW处理器

- 在同一个周期内发射的指令类型是受限制的

（例如，只能是一条ALU指令/分支指令、一条Load/Store指令）

- IA-64采用这种方法，Intel称其为EPIC（Explicitly Parallel Instruction 
Computer—显式并行指令计算机）

• 冒险处理（主要是数据冒险和控制冒险）

- 做法1：完全由编译器通过代码调度和插入nop指令来消除所有冒险，无需硬件

实现冒险检测和流水线阻塞

- 做法2：由编译器通过静态分支预测和代码调度来消除同时发射指令间内部依赖

，由硬件检测数据冒险并进行流水线阻塞

即：保证打包指令内部不会出现冒险！

Pipeline.101 2009年5月26日星期二

静态多发射处理器实例

° 实例：MIPS ISA 指令集的静态多发射----2发射处理器

要使原来的MIPS处理器能够同时处理两条流水线，数据通路需要做哪些改进？

1. 同时要能取并译码两条指令，怎么办？

• 将两条指令打包成64位长指令，前面为ALU/Branch，后面为lw/sw
• 没有配对指令时，就用nop指令代替

• 将64位长指令中的两个操作码同时送到控制器（指令译码器）进行译码

2. 两条指令同时要读两个寄存器（和sw配对时）或写寄存器（和lw配对时） ，怎么办？

• 增加一个读口和一个写口

3. 两条指令同时要使用ALU进行运算 ，怎么办？

• 增加一个ALU（包括2组输入总线和1组输出总线）
Pipeline.102 2009年5月26日星期二

2发射流水线数据通路（蓝色是增加部分）

同时需为ALU和Store操作读两
个寄存器，同时需为ALU运算
和Load结果写一个寄存器

需增加额外加法器或ALU
ALU/分支指令进行ALU运算时，
Load/Store指令要计算地址

指令成对放在64位对齐内
存区域，前面是ALU/分支

指令。如果不能成对，则
用nop指令代替缺失指令，

每次取两条指令，同时对
两条指令译码

控制器和控制信号会要求数据通路怎样改呢？

流水段寄存器要增宽，控制信号分别传送。



Pipeline.103 2009年5月26日星期二

2发射流水线的特点

° 优点：潜在性能将提高大约2倍 (实际上达不到！)

° 缺点：

• 为消除结构冒险，需增加额外部件

• 增加潜在的由数据冒险和控制冒险导致的性能损失

- 例1：对于Load-use数据冒险

– 单发射流水线：只有一条指令延迟

– 2发射流水线：有一个周期（2条指令）延迟

- 例2：对于ALU-Load/Store数据冒险

– 单发射流水线：可用“转发”技术使ALU结果直接转发到Load/Store指令

的EXE阶段

– 2发射流水线：两条指令同时进行，ALU的结果不能直接转发，因而不能

提供给与其配对的Load/Store指令使用，只能延迟一个周期

为了更有效地利用多发射处理器的并行性，必须有更强大的编译器，

能够充分消除指令间的依赖关系，使指令序列达到最大的并行性！

Pipeline.104 2009年5月26日星期二

例：2发射MIPS指令调度

° 以下是一个循环代码段

Loop:  lw $t0,  0($s1)
addu $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1, $zero, Loop

(能看出这段程序的功能吗？)
° 为了能在2发射MIPS流水线中有效执行，该怎样重新排列指令

• 调度方案如下：没有指令配对时，用nop指令代替

一个循环内，五条指令在四个时钟内完成，实际CPI为0.8，即: IPC=1.25
在循环中访问数组的更好的调度技术是“循环展开”

前三条和后两条各具有相关性

可把第四条指令调到第一条后面

sw指令是否有问题？怎么办？

循环内进行的是数组访问！

冒险！同时对同一个寄存器读，且
读后要写，取决于寄存器如何设计

能否把addi和lw配成一对？

$s1被减4，故sw指令偏移改为4

Pipeline.105 2009年5月26日星期二

用“循环展开”技术进行指令调度

° 基本思想：展开循环体，生成多个副本，在展开的指令中统筹调度

° 上例采用“循环展开”后的指令序列是什么？
• 为简化起见，假定循环执行次数是4的倍数

• “循环展开”4次后循环内每条指令（lw, addu, sw，与数组访问相关）有4条再
加上1条addi和1条bne, 共14条指令

• 指令最佳调度序列如下：

14条指令用了8个时钟，CPI达到8/14=0.57。
需要用到“重命名寄存器”技术，多用了三个临时寄存器$t1,$t2,$t3，消除了名

字依赖关系（非真实依赖，只是寄存器名相同而已）
代价是什么？多用了三个临时寄存器，并增加了代码大小（存储空间变大）

为何第一条指令将$s1减16？与$t0关联的指令偏移为何不同？

好处：充分利用并行，并消除部分循环分支！

Pipeline.106 2009年5月26日星期二

循环展开后的偏移量

° 第一条指令将$s1减16，使指令执行后，$s1的值变成了循环结束时$s1的值

° 所以循环体内各数组元素的访问指令的偏移量依次为：

16 - 数组元素1，12 - 数组元素2 ，8 - 数组元素3，4 - 数组元素4

$s1

$s1-16

数组元素1

数组元素2

数组元素3

数组元素4

为什么第一个周期中的lw指令的偏移量为0?
因为第一个周期中的lw指令进行地址计算时，

addi指令的执行结果还没有写到$s1中，所以，

此时$s1中还是原来的值?
为什么第一条addu指令不放在第二周期?
为了避免load-use数据冒险！

当循环次数不是4的倍数时，这样做就有问题！

可见：编译器和机器结构密切相关！系统程序员必须非常
了解机器结构！编译器的好坏直接影响机器的性能！

Pipeline.107 2009年5月26日星期二

实例：Intel IA-64架构
° IA-64类似于64位MIPS架构，是Register-Register型的RISC风格指令集

° 但有独特性：要求编译器显式地给出指令级的并行性，Intel称其为EPIC
Explicitly Parallel Instruction Computer—显式并行指令计算机

° 与MIPS-64架构的区别

• 更多寄存器：128个整数、128个浮点数、8个专用分支、64个1位谓词

• 支持寄存器窗口重叠技术

• 同时发射的指令组织在指令包（bundle）中

• 引入特殊的谓词化技术，以支持推测执行和消除分支，提高指令级并行度

° EPIC的实现技术

• 指令组（Instruction Group）：相互间没有寄存器级数据依赖的指令序列

- 指令组长度任意，用“停止标记”在指令组之间明显标识

- 指令组内部的所有指令可并行执行，只要有足够硬件且无内存操作依赖

• 指令包：同时发射的指令重新编码并形成指令包

- 长度为128，由5位长的模板字段、三个41位长的指令组成

- 模板字段对应于以下五类功能部件中的三条指令

整数ALU、非整数ALU（移位和多媒体）、访存、浮点、分支

• 谓词化：将指令的执行与谓词相关联，而不是与分支指令关联

Intel IA-64是?-发射流水线？ 3-发射流水线！ BACK
Pipeline.108 2009年5月26日星期二

RISC的通用寄存器

° RISC机采用大量寄存器

° 其目的：

• 减少程序访问存储器的次数

° RISC机寄存器的组织方式有两种：

• 重叠寄存器窗口技术ORW（硬件方法）

- 执行过程调用和返回时，利用寄存器组而不是存储器来完成参数传递

- 通过重叠窗口技术，使得不再需要保存和恢复寄存器内容

- 可大大提高了程序执行的速度

• 优化寄存器分配技术（软件方法）

- 规定一套寄存器分配算法

- 通过编译程序的优化处理来充分利用寄存器资源

- 编译器为那些在一定的时间内使用最多的变量分配寄存器

BACK



Pipeline.109 2009年5月26日星期二

重叠寄存器窗口技术（Overlapped Register Window ）

用于保存
局部数据

与调用自己的
父过程的输出
寄存器重叠

与被调用子
过程的输入
寄存器重叠

A调用B时，由于各自使用不同的局部寄存器，所以

不需保存现场

A过程的输出寄存器可直接把参数送给B
从B返回时，B将返回结果送到其输入寄存器，A可
直接得到B返回的结果

寄存器分为两类：

全局寄存器：所有过程共享

窗口寄存器：用于过程调用

BACK

Pipeline.110 2009年5月26日星期二

Intel IA-64架构的谓词和推测执行技术

° 谓词和谓词寄存器

• 分支指令中的条件称为谓词

• 每个谓词与一个谓词寄存器相关联

• 每条指令都可与最后6位标识（64个一位谓词，故谓词寄存器的标号用6
位表示）的谓词寄存器相关联，反映条件是否满足

° 可消除循环内if-then-else分支（循环分支可由循环展开部分消除）

例：if (p) { Statement1 } else { Statement2 } 被编译成：

(p) Statement1
(~p) Statement2

括号中的条件为1时，执行后面的代码，否则，转化为nop指令

° 条件分支指令被转化为由谓词寄存器关联的指令，消除了分支

° 通过谓词寄存器可实现指令的推测执行

IA-64是采用静态多发射机制的最复杂指令集，对编译器的要求极高

BACK

Pipeline.111 2009年5月26日星期二

动态多发射处理器

° 由硬件在执行时动态完成指令打包或冒险处理

° 通常被称为超标量处理器（Superscalar）
• 在一个周期内执行一条以上指令

° 与VLIW处理器的不同点：

• VLIW处理器：编译结果与机器结构密切相关，结构有差异的机器上要重新编译

• 超标量处理器：编译器仅进行指令顺序调整，但不进行指令打包，由硬件根据

机器的结构来决定一个周期发射哪几条指令。因此，编译后的代码能够被不同

结构的机器正确执行

° 多数超标量处理器都结合动态流水线调度（Dynamic pipeline scheduling）技术

• 通过指令相关性检测和动态分支预测等手段，投机性地不按指令顺序执行，当
发生流水线阻塞时，可以到后面找指令来执行

• 举例说明动态流水线调度技术：

sub指令可以提前执行，不需等lw和addu指令执行完

如果不将sub调到前面，可能要等很长时间（lw指令
的访存操作耗时较长！），从而影响slti指令的执行

左边指令序列中，哪条指令可以提前执行？

最佳的方案是什么？

Pipeline.112 2009年5月26日星期二

动态流水线调度的通用模型

° 动态流水线的一个重要的思想：在等待解决阻塞时，到后面找指令提前执行！

° 动态流水线的通用模型：

• 一个指令预取和译码单元：有序发射

• 多个并列执行的功能单元：乱序执行

• 一个提交单元：有序提交

每个功能单元有各自的保留站
用于保存操作数和操作命令

功能单元一旦完成
，则将结果同时送
其他等待该结果的
保留站和提交单元

提交单元缓存所有完成的指令结果，直
到该结果能安全写回到寄存器或存储器
，称为Reorder Buffer

指令的结果也可在Reorder 
Buffer中被“转发”

Pipeline.113 2009年5月26日星期二

功能单元的性能
° 功能：用来执行特定类型的操作

° 性能：每个功能单元具有基本的操作性能，用两个周期数来刻画

• 执行周期（Latency）：完成特定操作所花的周期数

• 发射时间（Issue Time）：连续、独立操作之间的最短周期数

以下是Pentium III 算术功能部件的性能

从上述图中看出，哪些功能部件是流水化的？哪些是非流水化的？

• 整数加、整数乘、浮点加、装入、存储这五种部件是流水化的

• 浮点乘部件是部分流水化

• 整数除和浮点除是完全没有流水化

CPU设计的一个原则：有限的芯片空间应该在各功能部件之间进行平衡！尽量让大多数资源用

于最关键的操作（对大量基准程序进行评估）

从上述图中能否看出：哪些是最重要的操作？哪些是不常用的？

整数加法和乘法、浮点数加法和乘法是重要的操作

除法相对来说不太常用，而且本身难以实现流水线
Pipeline.114 2009年5月26日星期二

动态流水线的几种执行模式
° 根据动态流水线指令发射和完成顺序，可分为三种执行模式：

• 按序发射按序完成（Pentium）

• 按序发射无序完成（Pentium II和Pentium III）
• 无序发射无序完成（Pentium 4）

保留站：存放操作数和操作命令

最保守的方案是顺序完成，好处：
(1) 简化异常检测和异常处理
(2) 能在被推测指令完成前得知推测

结果的正确性

• 指令发射时，其操作数可能在寄存器堆或ROB中，可
立即复制到保留站中，故源操作数寄存器可被覆盖

• 若操作数不在寄存器堆或ROB中，则一定在某个时刻
被一个功能单元计算出来，硬件将定位该功能单元，并
将结果从旁路寄存器复制到保留站

ReOrder Buffer  重排序缓冲:
用于保存已完成的指令结果，
等待在可能时写回寄存器堆

写回条件：与前面的所
有指令结果不相关、并
预测正确

SKIP



Pipeline.115 2009年5月26日星期二

按序发射按序完成

° 举例：2发射超标量，分为取指（F）、译码（D）、执行（E）、写回（W）。F
、D、W段在一个时钟周期内完成（可同时有两条指令在这三个阶段）；E段有三
个执行部件：Load/Store部件完成数据Cache访问需要1个时钟，整数ALU完成
简单ALU操作需2个时钟，整数乘法器完成乘法运算需要3个时钟。执行部件采用

流水化方式。

按序发射按序完成的过程如下：

i1 lw $1, A

i2 add $2, $2, $1

i3 add $3, $3, $4

i4 mul $4, $5, $4

i5 lw $6, B

i6 mul $6, $6, $7

为了按序完成，虽然i5在时钟6已经完成，
但一直推迟到i4写回后的第9时钟才写回

译码段 执行段 写回段

i1 i2 2

时钟

3

4

5

6

7
8
9

10

i2

ALUL/S Mul

i1

i2

i2 i3

i3

i4

i4
i4

i3 i4

i5 i6
i5

i6

i6
i6

[i5]

[i5]

i1

i2

i3
i4

i5
i6

i6

i1、i2间RAW; i5、i6间RAW和WAW，需

阻塞一个时钟周期，并一定要按序完成！

指令被阻塞在“译码器”中

如果还有一条乘法指令，则最多可有三条乘法指令同时在执行 BACK
Pipeline.116 2009年5月26日星期二

按序发射无序完成

° 举例：2发射超标量，分为取指（F）、译码（D）、执行（E）、写回（W）。F
、D、W段在一个时钟周期内完成（可同时有两条指令在这三个阶段）；E段有三
个执行部件：Load/Store部件完成数据Cache访问需要1个时钟，整数ALU完成
简单ALU操作只需2个时钟，整数乘法器完成乘法运算需要3个时钟。执行部件采

用流水化方式。

按序发射无序完成的过程如下：

i1 lw $1, A

i2 add $2, $2, $1

i3 add $3, $3, $4

i4 mul $4, $5, $4

i5 lw $6, B

i6 mul $6, $6, $7

译码段 执行段 写回段

i1 i2 2

时钟

3

4

5

6

7
8
9

10

i2

ALUL/S Mul

i1

i2

i2 i3

i3

i4

i4
i4

i3 i4

i5 i6
i5

i6

i6
i6

[i5]

[i5]

i1

i2

i3
i4
i5

i6

i6

无序完成时，因为i5在时钟6已经完成，和

i3、i4没有相关性，可以不需要等i3、i4写
回后再写回，所以可先于i4完成。

BACK

Pipeline.117 2009年5月26日星期二

无序发射无序完成

° 举例：2发射超标量，分为取指（F）、译码（D）、执行（E）、写回（W）。F
、D、W段在一个时钟周期内完成（可同时有两条指令在这三个阶段）；E段有三
个执行部件：Load/Store部件完成数据Cache访问需要1个时钟，整数ALU完成
简单ALU操作只需2个时钟，整数乘法器完成乘法运算需要3个时钟。执行部件采

用流水化方式。

无序发射无序完成的过程如下：

i1 lw $1, A

i2 add $2, $2, $1

i3 add $3, $3, $4

i4 mul $4, $5, $4

i5 lw $6, B

i6 mul $6, $6, $7

译码段 执行段 写回段

i1 i2 2

时钟

3

4

5

6

7
8
9

10ALUL/S Mul

i1

i2

i2 i3

i3

i4

i4

i4

i3 i4

i5 i6

i5

i6

i6
i6

i1

i2
i3 i4

i5

i6

无序发射的超标量中，译码后的指令被存放在
一个“指令窗口”的缓冲器中，等待发射

当所需功能部件可用、且无冲突或相关性阻碍
指令的执行时，就从指令窗口发射，与取指和
译码的顺序无关。

i7 i8

只要保证i1、i2和i5、i6的发射和完成顺序即可！

取指和译码按顺序进行，发射前进行相关性
检测，无关指令可先行发射和先行完成

例如：i4在i3前面发射！

BACK
Pipeline.118 2009年5月26日星期二

动态流水线调度的必要性

° 编译器可以依据数据依赖关系来调度代码，为什么还要超标量处理器来动态调度？

• 并不是所有阻塞都能事先确定，动态调度可在阻塞时，提前执行无关指令

- 例如，Cache缺失是不可预见的阻塞

• 动态分支预测需要根据执行的真实情况进行预测

• 采用动态调度使得硬件将处理器细节屏蔽起来

（不同处理器的发射宽度、流水线延时等可能不同，流水线的结构也会影响循环

展开的深度。通过动态调度使得处理器细节屏蔽起来，软件发行商无需针对同

一指令集的不同处理器发行相应的编译器，并且，以前的代码也可在新的处理

器上运行，无需重新编译）

理解程序的性能：

高性能微处理器并不能持续进行多条指令的发射，原因有：

(1) 指令间的高度依赖关系限制了指令之间的并行执行，特别是隐含依赖关系的存在

例如，使用指针的代码段，存在隐含依赖

(2) 分支指令预测错误

(3) 内存访问引起的阻塞（Cache缺失、缺页等）使得流水线难以满负荷运转

Pipeline.119 2009年5月26日星期二

回顾：Pentium 4 处理器的芯片布局

L1数据cache
L2 cache

Trace cache
(L1指令cache)

浮点运算器
MMX

超级流水线
技术

前端总线
及其接口

定点运算器

高级动态执行

Pipeline.120 2009年5月26日星期二

回顾：Pentium 4 处理器的逻辑结构

指令译码器

整 数 寄 存 器 组

L2
cache

(48GB/s)

L1数据cache(8KB)

浮 点 寄 存器 组

慢ALU

复杂指令

2xALU

简单指令

2xALU

简单指令

2xAGU

存地址
浮点存

浮点 取

2xAGU

取地址
MMXSSE/

SSE2

浮点加

浮点乘

浮点除

分支预测器BTB2执行跟踪cache
(12000微操作)微码ROM

微操作队列 微操作队列

指令预取部件 分支预测器BTB1
前
端
总
线

256位，时钟频率

64位,时钟频率

总线
接口部件

预取
控制逻辑

BTB1静态预测从L2的何处预取指令

BTB2动态预测
从trace cache
的何处取微操作

简单指令直接译码成
1~4条微操作；复杂指
令从微码ROM中取



Pipeline.121 2009年5月26日星期二

Pentium 4的超标量结构运算器

°采用超标量（superscalar）结构，一共包含9个运算部件，可同时工作，所花时钟不同

• 2个高速整数ALU(每个时钟周期进行2次操作)， 用于完成简单的整数运算(如加、减法)
• 1个慢速整数ALU(需要多个时钟周期才能完成1次操作)，用于完成整数乘、除法运算

• 2个地址生成部件（AGU），用于计算操作数的有效地址，所生成的地址分别用于从内

存取操作数或向内存保存操作结果

• 1个运算部件用于完成浮点操作数地址的计算

• 1个运算部件用于完成浮点加法、乘法和除法运算

• 1个运算部件用于执行流式的SIMD处理（SSE/SSE2/SSE3指令）

• 1个运算部件用于完成多媒体信号处理（MMX指令）

整 数 寄 存 器 组

L1数据cache(8KB)

浮 点 寄 存 器 组

慢ALU

复杂

指令

2xALU 2xALU

简单

指令

2xAGU

存地址

浮点 存

浮 点 取

2xAGU

取地址
MMX

SSE
SSE2
SSE3

浮点加、减、
乘、除等运
算

简单

指令

在运算部件中执行的是微操作，而不是指令！运算器中的操作采用流水方式！

Pipeline.122 2009年5月26日星期二

回顾：Pentium 4 的用户可见寄存器组

整数寄存器组
P4  Pentium  80386 80486         8086  8088

浮点寄存器组

指令计数器

标志寄存器

在Pentium4内部，整数和浮点

数各有128个寄存器

寄存器换名操作：将用户可见

的外部逻辑寄存器换成内部的

物理寄存器

寄存器换名时，要确定是真实

依赖还是名字依赖（反依赖）

名字依赖时可用不同的物理寄

存器替换相同的逻辑寄存器

Pipeline.123 2009年5月26日星期二

Pentium4 流水线结构部分
指令译码结果是对应的若干条微操作MOP

TraceCache存放指令对应的微操作序列

，一条分支微操作序列称为一个踪迹（
trace），TC中有多条trace，动态预测将
哪条trace送MOP队列(126项ROB)

分配资源（内部寄存器、缓冲器）并重命
名后将MOP分别送两个不同队列

ROB各项中记录对应
MOP的资源分配状态

整数/浮点队列和存储队

列各自有调度器，用于
检测相关性，无序发射

Pentium 4是“CISC壳、RISC核”结构

从TC中取MOP开始，进入MOP的20级超标量超流水线

每个MOP相当于一条RISC指令

但其格式没有公开

Pipeline.124 2009年5月26日星期二

Pentium 4的指令译码 – 对指令功能进行分解

° 指令译码逻辑：

• 功能：将指令转换为一组基本操作，称为微操作MOP
• 输入：程序中的指令

• 输出：微操作（简单计算任务）

例1：addl %eax,  %edx 的译码结果为什么？

一个“加法”操作（对应一个微操作MOP）

例2：addl %eax,  4 (%edx)  的译码结果呢？

四个简单操作（对应四个微操作MOP）：

“地址计算”：Reg[%edx]+4->addr

“装入”：Mem[addr]->Reg[Rtemp]

“加法”：Reg[Rtemp]+Reg[%eax]->Reg[Rtemp]

“存数”：Reg[Rtemp]->Mem[addr]

一个微操作相当于一条RISC指令，译码生成的微操作序列被存放到Trace Cache中

Pipeline.125 2009年5月26日星期二

Pentium4 的20级超流水线(Hyper-pipeline)

建立标志信
息ZF/CF等，

并将执行结
果写入物理
寄存器。
对BTB2中
预测是否正
确进行确认
及相应处理

在不同
的执行
部件中
执行。
每个部
件执行
时间长
短不同

被发射的
MOP开始

读取物理
寄存器中
的源操作
数，或从
旁路由L1-
D Cache
读取。

每个队列按FIFO
将MOP送到各自

的调度器，在调
度器中进行数据
相关性检测，当
所有源操作都就
绪时，将MOP发
射到对应的执行
部件。是“无序”
发射。

一个周期3条MOP
送ROB。ROB有
126项，记录每个
MOP及分配的资源

和执行状态，根据
资源分配情况进行
寄存器重命名后，
分别送两个MOP队
列中进行排队。

沿一个踪迹顺序取
MOP，直到遇到一条
转移MOP，通过
BTB2预测下个踪迹
开始点，继续取MOP
送ROB/Alloc/Ren部
件。预测目标处MOP
不在时，要通知指令
预取器，快从L2中取

指令并译码。

两个drive段用于芯片内传输信号的驱动，使其保证长距离传输

整数运算微操作流水线为20级，浮点为29级（执行阶段的长度不同）

Pipeline.126 2009年5月26日星期二

本讲小结
° 有以下两种指令级并行(ILP)技术（即：高性能流水线形式）

• 超流水线：更多的流水线级数

• 多发射流水线：同时发射多个指令，有多条流水线同时进行

- 静态多发射（VLIW处理器+编译器静态调度）

- 动态多发射（超标量处理器+动态流水线调度）

° 静态多发射（VLIW（超长指令字）处理器）

• 由编译器静态推测来完成“指令打包”和“冒险处理”
• MIPS 2-发射Datapath中有2个执行部件，将2条指令打包，并同时译码执行

• 采用循环展开进行指令调度，能得到很好的性能

• IA-64采用VLIW级数，Intel特称其为EPIC技术，3条指令打包

° 动态多发射（超标量处理器）

• 指令执行时由硬件动态推测，多个执行部件，同时发射多个指令到执行部件

• 3种动态多发射流水线的执行模式

- 按序发射按序完成、按序发射无序完成、无序发射无序完成

• Pentium 4 动态多发射流水线（无序发射、无序完成）

- 简单指令由硬件译码器 + 复杂指令由微操作ROM 产生 MOP
- 指令对应的MOP存放在 trace cache中，按一条条trace存放 （同一条指令对应

的若干微操作可能存放在不同的trace中）

- 20级以上超流水线、3发射超标量、2个队列动态调度、126条微操作同时执行

- 指令静态预测 + 微操作动态预测



Pipeline.127 2009年5月26日星期二

本章总结1

° 指令流水线的设计

• 将每条指令的执行规整化为若干个同样的流水阶段

• 每个流水阶段的执行时间一样，都等于一个时钟

• 理想情况下，每个时钟有一条指令进入流水线，也有一条指令执行结束

• 每个流水段中的部件都是组合逻辑加寄存器，组合逻辑中产生的结果在时钟

到来时被存储到寄存器（如：程序计数器、条件码寄存器、流水线寄存器等

）。

• 每两个相邻流水段之间的流水线寄存器，用以记录所有在后面阶段要用到的

各种信息，有哪些呢？

- 控制信号、指令的代码、参加运算的操作数、指令运算结果、指令异常信

息、寄存器读口地址、寄存器写口地址、存储器地址、新的PC值等。

• 指令译码得到的控制信号通过流水线寄存器传送到后面各个流水段中

Pipeline.128 2009年5月26日星期二

本章总结2

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2

单周期, 多周期 和 流水线比较

Pipeline.129 2009年5月26日星期二

本章总结3

° 指令流水线的局限性

• 并不是每条指令都有相同多个流水段

• 并不是每个流水段都一样长

• 随着流水线深度的增加，流水线寄存器的额外开销比例也增大

• 指令在资源冲突、数据相关或控制相关时会发生流水线冒险

° 指令流水线的执行效率

• 吞吐率：比非流水线方式下大大提高

• 指令执行时间：相对于非流水线方式，一条指令的执行时间延长了

° 提高流水线指令效率的高级流水线技术

• 超流水线：级数更多的流水线

• 多发射流水线：同时发射多条指令的流水线

- 静态多发射：VLIW结构、编译器静态推测

- 动态多发射：超标量结构、硬件动态推测调度

Pipeline.130 2009年5月26日星期二

本章总结4

° 结构冒险（资源冲突）：多条指令同时使用同一个功能部件

• 规定每个功能部件在一条指令中只能被用一次

• 规定每个功能部件只能在某个特定的阶段被用

• 指令存储器(Code Cache)和数据存储器(Data Cache)分开

° 数据冒险（数据相关）：前面指令的结果是后面指令的操作数

• 软件阻塞：（如：编译器）在后面的数据相关指令前插入nop指令

• 硬件阻塞：在后面数据相关指令的特定流水段插入“气泡”以“阻塞”指
令继续执行，直到取得所需数据为止

• “转发”（旁路）：把前面指令执行过程中得到的数据直接传送到后面

指令。

• 对于取数后直接使用的情况（如：Load指令取出的数据是随后的运算
指令的操作数），则采用“阻塞加转发”的方式解决数据冒险

Pipeline.131 2009年5月26日星期二

本章总结5

° 控制冒险（控制相关）：返回指令、分支指令等可能改变顺序增量的PC值

，由于获取转移目标地址的时间较长，使得在目标地址产生前已经有指令被

取到流水线中，如果已经取出执行的指令不是正确的指令，则发生控制冒险

。

• 软件阻塞：（如：编译器）在控制相关指令后面插入nop指令

• 硬件阻塞：在控制相关指令后面的指令被取出前插入“气泡”，使流水线

停顿若干时钟，直到控制相关指令得到正确的PC值为止

• 采用“分支预测”技术。简单（静态）地预测每次分支结果都一样，或根

据分支指令执行历史进行动态预测，动态预测能达到90%以上的成功率

• 采用延迟分支技术。将前面一条与分支指令无关的指令放到分支指令后

面执行，这样，流水线不会发生阻塞现象。这种对指令顺序进行调整的

工作在程序编译阶段完成

Pipeline.132 2009年5月26日星期二

第七章作业

° 2（1）（5） （6）（7） （8）
° 3、4、5、6、7、8、9、10

6月2号交作业


