
Ch2: Data Representation
数据的机器级表示

第一讲 数值数据的表示

第二讲 非数值数据表示及
数据的宽度、存储排列、纠/检错

2009-5-26

第一讲：数值数据的表示

主 要 内 容

� 定点数的表示

• 进位计数制

• 定点数的二进制编码

- 原码、补码、移码表示

• 定点整数的表示

- 无符号整数、带符号整数

� 浮点数格式和表示范围

� 浮点数的规格化

� IEEE754浮点数标准

• 单精度浮点数、双精度浮点数

• 特殊数的表示形式

� C语言程序中的整数类型、浮点数类型

� 十进制数表示

2009-5-26

信息的二进制编码

�计算机的外部信息与内部机器级数据

• 数值数据：无符号整数、带符号整数、浮点数（实数）、十进制数

• 非数值数据：逻辑数（包括位串）、西文字符和汉字

�计算机内部所有信息都用二进制（即：0和1）进行编码

�用二进制编码的原因：

• 制造二个稳定态的物理器件容易

• 二进制编码、计数、运算规则简单

• 正好与逻辑命题对应，便于逻辑运算，并可方便地用逻辑电路实现

算术运算

�真值和机器数

• 机器数：用0和1编码的计算机内部的0/1序列

• 真值：机器数真正的值，即：现实中带正负号的数

首先考虑数值数据的表示
无 符 号 整 数 有 符 号 整 数

高 级 语 言 程 序 员 角 度 图 、 树 、 链 表 等 结 构 化 数 据 描 述

文 字 、 图 、 表 、 声 音 、

视 频 等 各 种 媒 体 信 息

输 出 设 备

用 户 角 度

输 入 设 备

低 级 语 言 程 序 员 和

系 统 设 计 者 角 度

二 进 制 编 码 表 示 的 各 种 数 据

指 令 系 统 能 识 别

的 基 本 类 型 数 据

数 值 型 数 据 非 数 值 型 数 据

整 数（ 定 点 数 ） 实 数 （ 浮 点 数 ）

二 进 制 数 二 进 制 编 码 的

十 进 制 数
逻 辑 数 据 西 文 字 符 和 汉 字

2009-5-26

数值数据的表示

�数值数据表示的三要素

• 进位计数制

• 定、浮点表示

• 如何用二进制编码

即：要确定一个数值数据的值必须先确定这三个要素。

例如，机器数 01011001的值是多少？

�进位计数制

• 十进制、二进制、十六进制、八进制数及其相互转换

�定/浮点表示（解决小数点问题）

• 定点整数、定点小数

• 浮点数（可用一个定点小数和一个定点整数来表示）

�定点数的编码（解决正负号问题）

• 原码、补码、反码、移码 （反码很少用）

答案是：不知道！

2009-5-26

Sign and Magnitude （原码的表示）

BinaryDecimal
0
1
2
3
4
5
6
7

0000
0001
0010
0011
0100
0101
0110
0111

� 容易理解, 但是：

x 0 的表示不唯一，不利于程序员编程

x加、减运算方式不统一

x需额外对符号位进行处理，不利于硬件设计

x特别当 a<b时，实现 a- b比较困难

从 50年代开始，整数都采用补码来表示

但浮点数的尾数用原码定点小数表示

BinaryDecimal
-0
-1
-2
-3
-4
-5
-6
-7

1000
1001
1010
1011
1100
1101
1110
1111

2009-5-26

Excess (biased) notion- 移码表示

°什么是“excess (biased) notation-移码表示”？
将每一个数值加上一个偏置常数（ Excess / bias）

°一般来说，当编码位数为 n时，bias取 2n-1

Ex. n=4: Ebiased = E+ 23 (bias= 23 =10002)
-8 (+8) ~ 00002
-7 (+8) ~ 00012

…
0 (+8) ~ 10002

…
+7 (+8) ~ 11112

°为什么要用移码来表示指数（阶码）?
便于浮点数加减运算时的对阶操作

Back to last

例：1.01 x2 -1+1.11 x23

简化比较补码：1111< 0011 ?
(-1) (3)

1.01 x2-1+4+1.11 x23+4

移码：0011< 0111
(3) (7)

移码主要用来表示浮点数的阶码！

0的移码表示惟一

移码和补码仅第一位不同

2009-5-26

回顾：补码特性 - 模运算（modular运算）

时钟是一种模-12系统

假定钟表时针指向10点，要将它拨向６点， 则有两种拨法：

① 倒拨4格：10-4=6
② 顺拨8格：10+8=18≡6 (mod 12)
模12系统中： 10-4 ≡ 10+8 (mod 12)

-4≡ 8 (mod 12)
则，称8是- 4对模12的补码。

同样有 -3 ≡ 9 （mod 12）
-5 ≡ 7 （mod 12）等

结论2： 对于某一确定的模，某数减去小于模的另一数，总可以用该

数加上另一数的补码来代替。

补码（modular运算）：+ and – 的统一

重要概念：在一个模运算系统中，一个数与它除以“模”后的余数等价。

结论1： 一个负数的补码等于模减该负数的绝对值。

2009-5-26

模运算系统举例

例1：“钟表”模运算系统

假定时针只能顺拨，从10点倒拨4格后是几点？

10- 4=10+(12- 4)=10+8=6 （mod 12）

例2：“4位十进制数” 模运算系统

假定算盘只有四档，且只能做加法，则在算盘上计算

9828-1928等于多少？

9828-1928=9828+(104-1928)

=9828+8072

= 1 7900

=7900（mod 104）

取模的含义就是只留余数，高位的“1”被丢
弃！相当于只有低4位留在算盘上。

2009-5-26

运算器是一个模运算系统，适合用补码表示和运算

0000 0001

1000

0010

0100

1110
1111

0111

0101

1010

1011

1100

1101 0011

0110
1001

计算机中的运算器只有有限位，假定为n位，则运算结果只能保留低n位，可看成
是个只有n档的二进制运算算盘。所以，其模为2n 。

当n=4时，共有16个机器数：0000 ~ 1111，可看成是
模为24 的钟表系统。真值范围为：-8 ~ +7

补码的定义 假定补码有n位，则：

① 定点整数：[X]补= 2n+ X （-2n≤X＜ 2n ，mod 2n）

② 定点小数：[X]补= 2 + X （-1≤X＜1，mod 2）

特殊数的补码（假定有n位）

① [-2n-1]补= 2n-2n-1 = 10…0（n-1个0） （mod 2n）

② [-1]补= 2n-0…01 = 11…1（n个1） （mod 2n）

③ [-1.0]补= 2-1.0 = 1.00…0（n-1个0） （mod 2）
④ [+0]补= [-0]补= 00…0（n个0）

151411 13121097654 83210-2-3-4-5 -1-6-7-8

1

2[-8,-1] is shifted to [8,15]. The modul here is 10000

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

2009-5-26

Two’s Complement （补码的表示）
� 正数：符号位（sign bit）为0，数值部分不变

� 负数：符号位为1，数值部分“各位取反，末位加1”

+0和-0表
示唯一

变形（模4）补码：双符号，用于存放可溢出的中间结果。

值太大，用4位补码无法表示，故“溢出”！
但用变形补码可保留符号位和最高数值位。

Bitwise
Inverse
1111
1110
1101
1100
1011
1010
1001
1000
0111

Decimal
0
1
2
3
4
5
6
7
8

补码

0000
0001
0010
0011
0100
0101
0110
0111
1000

Decimal
-0
-1
-2
-3
-4
-5
-6
-7
-8

补码

0000
1111
1110
1101
1100
1011
1010
1001
1000

变形补码

00000
00001
00010
00011
00100
00101
00110
00111
01000

变形补码

00000
11111
11110
11101
11100
11011
11010
11001
11000

2009-5-26

如何求补码的值

根据补码各位上的“权”，可以求出一个补码的值

当N=4时，范围为：-23 ~ 23 -1 （即：-8 ~ +7）

当N=32时，范围为：-231 ~ 231 -1

2009-5-26

Unsigned integer(无符号整数)

� 机器中字的位排列顺序有两种方式：（例：32位字10112）

• 高到低位从左到右：0000 0000 0000 0000 0000 0000 0000 1011
• 高到低位从右到左：1101 0000 0000 0000 0000 0000 0000 0000
• MIPS采用高到低从左往右排列

• Leftmost和rightmost这两个词有歧义，故用LSB(Least Significant Bit)来表示最

低有效位，用MSB来表示最高有效位

� 若一个字为n位，则可表示的不同模式的字有2n个

• N=4时，16种模式为0000 ~ 1111

� 一般在全部是正数运算且不出现负值结果的场合下，可使用无符号数

表示。例如地址运算

� 无符号数的各位编码中没有符号位

� 在字长相同的情况下，它的表示范围大于有符号数

� 无符号数总是整数，所以很多时候就简称为“无符号数”

� 最大8位无符号整数是11111111B，其值为255

MSB

LSB

2009-5-26

Signed integer（带符号整数）

� 计算机必须能处理正数(positive) 和负数(negative)，MSB表示数符

� 有三种表示方式

• Signed magnitude （原码）

用来表示浮点（实）数的尾数

• One’s complement （反码）

现已不用

• Two’s complement （补码）

50年代以来，所有计算机都用补码来表示定点（整）数

� 为什么用补码表示带符号整数？

• 补码运算系统是模运算系统，加、减运算统一

• 数0的表示惟一，方便使用

• 比原码和反码多表示一个最小负数

• 与移码相比，其符号位和真值的符号对应关系清楚

2009-5-26

带符号数和无符号数的比较

� 扩充操作有差别

• 例如，MIPS提供了两种加载指令

- 无符号数：lbu $t0, 0($s0) ; $t0的高24位补0 （称为0扩展）

- 带符号数： lb $t0, 0($s0) ; $t0的高24位补符号 （称为符号扩展）

� 数的比较有差异

• 无符号数：MSB为1的数比MSB为0的数大

• 带符号数： MSB为1的数比MSB为0的数小

• 例如，MIPS中提供了不同的比较指令，如：

- 无符号数：sltu $t0, $s0, $s1 （set less than unsigned）
- 带符号数： slt $t1, $s0, $s1 （set less than）

假定： $s0=1111 1111 1111 1111 1111 1111 1111 1111
$s1=0000 0000 0000 0000 0000 0000 0000 0001

则：$t0和$t1分别为多少？

答案：$t0和$t1分别为0和1。
� 溢出判断有差异（无符号数根据最高位是否有进位来判断溢出）

• MIPS规定：无符号数运算溢出时，不产生“溢出异常”

2009-5-26

C语言程序中的整数

0 = = 0U
-1 < 0
-1 < 0U
2147483647 > -2147483647 - 1
2147483647U > -2147483647 - 1
2147483647 > (int) 2147483648U
-1 > -2
(unsigned) -1 > -2

说明结果运算类型关系表达式

无符号数：unsigned int (short / long)；带符号数： int (short / long)
常在一个数的后面加一个“u”或“U”表示无符号数

若运算中同时有无符号数和有符号整数，则C编译器隐含将有符号数强制转换为无符号数

假定以下关系表达式在32位用补码表示的机器上执行，结果是什么？

2009-5-26

C语言程序中的整数

00…0B = 00…0B
11…1B (-1) < 00…0B (0)
11…1B (232-1) > 00…0B(0)
011…1B (231-1) > 100…0B (-231)
011…1B (231-1) < 100…0B(231)
011…1B (231-1) > 100…0B (-231)
11…1B (-1) > 11…10B (-2)
11…1B (232-1) > 11…10B (232-2)

1
1
0*
1
0*
1*
1
1

无符号整数

有符号整数

无符号整数

有符号整数

无符号整数

有符号整数

有符号整数

无符号整数

0 = = 0U
-1 < 0
-1 < 0U
2147483647 > -2147483647 - 1
2147483647U > -2147483647 - 1
2147483647 > (int) 2147483648U
-1 > -2
(unsigned) -1 > -2

说明结果运算类型关系表达式

无符号数：unsigned int (short / long)；带符号数： int (short / long)
常在一个数的后面加一个“u”或“U”表示无符号数

若运算中同时有无符号数和有符号整数，则C编译器隐含将有符号数强制转换为无符号数

假定以下关系表达式在32位用补码表示的机器上执行，结果是什么？

2009-5-26

Example:
mantissa (尾数) exponent(阶码、指数)

6.02 x 10 21

decimal point radix (base，基)

° Normalized form（规格化形式）: 小数点前只有一位非0数
° 同一个数有多种表示形式。例：对于数 1/1,000,000,000

•Normalized (唯一的规格化形式): 1.0 x 10-9

•Unnormalized（非规格化形式不唯一）: 0.1 x 10-8, 10.0 x 10-10

科学计数法(Scientific Notation)与浮点数

mantissa（尾数） exponent（指数）

1.011two x 2 -10

binary point 基为2

for Binary Numbers:

只要对尾数和指数分别编码，就可表示一个浮点数（即：实数）

2009-5-26

浮点数的表示
°Normal format（规格化数形式） ：

+/-1.xxxxxxxxxxtwo x 2Exponent

°32-bit 规格化数：

31 0
S Exponent Significand

1 bit ? bits ? bits
S 是符号位（Sign）
Exponent用 excess (or biased) notation(移码/增码)来表示

Significand 表示 xxxxxxxxxxxxx，尾数部分

(基可以是 2/ 4 / 8 / 16，约定信息，无需显式表示)
°早期的计算机，各自定义自己的浮点数格式

问题：浮点数表示不统一会带来什么问题？

2009-5-26

浮点数(Floating Point)的表示范围

例：画出下述32位浮点数格式的表数范围。

0 1 8 9 31

第0位为数符S；第1～8位为8位移码表示的阶码E（偏置常数为128）；第9～
31位为24位二进制原码小数表示的尾数M。规格化尾数的第一位总是1，故规

定第一位默认的“1”不明显表示出来。这样可用23个数位表示24位尾数。

正下溢 负下溢

- (1-2-24) ×2127
数轴

零 可表示的正数 可表示的负数

-2-129 0 2-129 (1-2-24) ×2127

正上溢 负上溢

S 阶码E 尾数M

最大正数：0.11…1 x 211…1 =(1-2-24) x 2127 最小正数：0.10…0 x 200…0 =(1/2) x 2-128

因为原码和移码都是对称的，所以其表示范围是关于原点对称的。

机器0：阶码为0 或 落在下溢区中的数

浮点数范围比定点数大，但数的个数没有变多，故数之间更稀疏，且不均匀

2009-5-26

“Father” of the IEEE 754 standard

现在所有计算机都采用IEEE754来表示浮点数

1970年代后期, IEEE成立委员会着手制定浮点数标准

1985年完成浮点数标准IEEE754的制定

Prof. William Kahan
www.cs.berkeley.edu/~wkahan/
ieee754status/754story.html

This standard was primarily the work of one person,
UC Berkeley math professor William Kahan.

直到80年代初，各个机器内部的浮点数表示格式还没有统一
因而相互不兼容，机器之间传送数据时，带来麻烦

2009-5-26

IEEE 754 Floating Point Standard

Single Precision ： (Double Precision is similar)

S Exponent Significand
1 bit 8 bits 23 bits

° Sign bit: 1 表示negative ; 0表示 positive

°Significand（尾数）:
• 规格化尾数最高位总是1，所以隐含表示，省1位
• 1 + 23 bits （ single），1 + 52 bits （double）

°Exponent（阶码 / 指数）:
•SP规格化数阶码范围为0000 0001(-126) ~ 1111 1110(127)
•bias为127 (single), 1023(double)

SP: (-1)S x (1 + Significand) x 2(Exponent-127)

DP: (-1)S x (1 + Significand) x 2(Exponent-1023)

全0和全1编码要用来表示特殊的值！

为什么用127？若用128,
则阶码范围为多少？

0000 0001(-127)
~ 1111 1110(126)

2009-5-26

Ex: Converting Binary FP to Decimal

1011 1110 1110 0000 0000 0000 0000 0000

°Sign: 1 => negative
°Exponent:

• 0111 1101two = 125ten
• Bias adjustment: 125 - 127 = -2

°Significand:
1 + 1x2-1+ 1x2-2 + 0x2-3 + 0x2-4 + 0x2-5 +...

=1+2-1 +2-2 = 1+0.5 +0.25 = 1.75
°Represents: -1.75tenx2-2 = -0.4375 (= -4.375x10-1)

(-1)S x (1 + Significand) x 2(Exponent-127)

BEE00000H is the hex. Rep. Of an IEEE 754 SP FP number

2009-5-26

Ex: Converting Decimal to FP
-1.275 x 101

1. Denormalize: -12. 75
2. Convert integer part:

12 = 8 + 4 = 11002

3. Convert fractional part:
.75 = .5 + .25 = .112

4. Put parts together and normalize:
1100.11 = 1.10011 x 23

5. Convert exponent: 127 + 3 = 128 + 2 = 100000102

1100 0001 0100 1100 0000 0000 0000 0000
The Hex rep. is C14C0000H

2009-5-26

Normalized numbers（规格化数）

Exponent Significand Object

1-254 anything Norms
implicit leading 1

0 0 ?
0 nonzero ?

255 0 ?

255 nonzero ?

前面的定义都是针对规格化数（normalized form）

How about other patterns?

2009-5-26

Representation for 0

How to represent 0?

exponent: all zeros
significand: all zeros
What about sign? Both cases valid.

+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000

2009-5-26

Representation for +∞/-∞

How to represent +∞/-∞?
• Exponent : all ones (11111111B=255)
• Significand: all zeros

+∞ : 0 11111111 00000000000000000000000
-∞ : 1 11111111 00000000000000000000000

Operations
5 / 0 =+∞, -5 / 0 =-∞
5+(+∞)=+∞, (+∞)+(+∞)=+∞

 5 - (+∞)=-∞, (-∞) - (+∞)= -∞ etc

为什么要这样处理?
• 可以利用+∞/-∞作比较。 例如：X/0 > Y 可作为一个有效比较

In FP, 除数为0的结果是 +/- infinity, 不是overflow.

2009-5-26

Representation for “Not a Number”
Sqrt (- 4.0) = ? 0/0 = ?

• Called Not a Number (NaN) - “非数”

Operations
sqrt(-4.0)=NaN 0/0=NaN
op(NaN,x) = NaN +∞+(-∞)=NaN
+∞-(+∞)=NaN ∞/∞=NaN

etc.

How to represent NaN
Exponent = 255
Significand: nonzero
NaNs can help with debugging

2009-5-26

What have we defined so far? (Single Precision)

Representation for Denorms(非规格化数)

Used to represent
Denormalized

numbers

Exponent Significand Object

0 0 +/-0

0 nonzero Denorms

1-254 anything Norms
implicit leading 1

255 0 +/- infinity

255 nonzero NaN

2009-5-26

Representation for Denorms

2-126 2-125 2-124 2-123

1.0…0x2-126~ 1.1…1x2-126

0.0…0x2-126~ 0.1…1x2-126

2-126 2-125 2-124 2-1230

0
GAP

Normalized numbers

Denorms (-1) s×0.aa…a ×2-126

2009-5-26

Questions about IEEE 754
� What’s the range of representable values?

The largest number for single: +1.11…1X2127

How about double?
� What about following type converting: not always true!

if (i == (int) ((float) i)) {
printf (“true”);

}
if (f == (float) ((int) f)) {

printf (“true”);
}

� How about FP add associative? FALSE!
x = – 1.5 x 1038, y = 1.5 x 1038, z = 1.0

(x+y)+z = (–1.5x1038+1.5x1038) +1.0 = 1.0
x+(y+z) = –1.5x1038+ (1.5x1038+1.0) = 0.0

How about double?

How about double?

True!

Not always true!

约 +3.4 X 1038

约 +1.8 X 10308

2009-5-26

� 数值数据（numerical data）的两种表示

Binary (二进制数)

o 定点整数：Fixed-point number (integer)

o 浮点数：Floating-point number (real number)

Decimal (十进制数)

o 用ASCII码表示

o 用BCD（Binary coded Decimal）码表示

� 计算机中为什么要用十进制数表示数值？

• 日常使用的都是十进制数，所以，计算机外部都使用十进制数。在

一些有大量数据输入/出的系统中，为减少二进制数和十进制数之

间的转换，在计算机内部直接用十进制数表示数值。

十进制数的表示

2009-5-26

用ASCII码表示十进制数
� 前分隔数字串

• 符号位单独用一个字节表示，位于数字串之前。

• 正号用“+”的ASCII码(2BH)表示；负号用“-”的ASCII码(2DH)表示

• 例：十进制数+236表示为: 2B 32 33 36H
0010 1011 0011 0010 0011 0011 0011 0110B
十进制数-2369表示为: 2D 32 33 36 39H
0010 1101 0011 0010 0011 0011 0011 0110 0011 1001B

� 后嵌入数字串

• 符号位嵌入到最低一位数字的ASCII码的高4位中。比前分隔方式省一个字节。

• 正数不变；负数高4位变为0111.
• 例：十进制数+236表示为: 32 33 36H

0011 0010 0011 0011 0011 0110B
十进制数-2369表示为: 32 33 36 79H
0011 0010 0011 0011 0011 0110 0111 1001B

缺点：占空间大，且需转换成二进制数或BCD码才能计算。

2009-5-26

� 编码思想

每个十进数位必须至少有4位二进制位来表示。而4位二进制位可以组合成16种

状态，去掉10种状态后还有6种冗余状态。

� 编码方案

1． 十进制有权码

- 指表示每个十进制数位的4个二进制数位（称为基2码）都有一个确定的

权。8421码是最常用的十进制有权码。也称自然BCD（NBCD）码。

2． 十进制无权码

- 指表示每个十进制数位的4个基2码没有确定的权。在无权码方案中，用

的较多的是余3码和格雷码。

3．其他编码方案 （5中取2码、独热码等）

� 符号位的表示：

• “+”：1100 ； “-”：1101
• 例：+236=(1100 0010 0011 0110)8421 (占2个字节)

- 2369=(1101 0000 0010 0011 0110 1001)8421 (占3个字节)

用BCD码表示十进制数

补0以使数占满一个字节

2009-5-26

第一讲小结
� 计算机内所有信息都用二进制编码，在机器内部编码后的数称为机器数，其值称为真值

� 定义数值数据有三个要素：进制、定点/浮点、编码

� 定点数编码：原码、补码、移码

� 定点数：

• 定点整数：表示整数或浮点数中的指数（阶码）；定点小数：表示浮点数中的尾数

� 整数的表示

• 无符号数：正整数，用来表示地址等；带符号整数：用补码表示

� C语言中的整数

• 无符号数：unsigned int (short / long)；带符号数： int (short / long)
� 浮点数的表示

• 符号；尾数：定点小数；指数（阶）：定点整数（基不用表示）

� 浮点数的范围

• 不可表示区域：正上溢、正下溢、负上溢、负下溢；与阶码的位数和基的大小有关

� 浮点数的精度

• 与尾数的位数和是否规格化有关；规格化操作：左规、右规

� 浮点数的表示（IEEE754标准）：单精度SP（float）和双精度DP（double）
- 规格化数(SP)：阶码1~254，尾数最高位隐含为1
- “零” (阶为全0，尾为全0)
- ∞ (阶为全1，尾为全0)
- NaN (阶为全1，尾为非0)
- 非规格化数 (阶为全0，尾为非0)

� 十进制数的表示：用ASCII码、BCD码表示
2009-5-26

第二讲 非数值数据、数据排列、纠/检错

主 要 内 容

�非数值数据的表示

• 逻辑数据

• 西文字符

• 汉字

�数据的宽度

�数据的存储排列

• 大端方式

• 小端方式

�数据的纠错和检错

• 奇偶校验

• 海明校验

• 循环冗余校验

2009-5-26

�表示

• 用一位表示 真：1 / 假：0

• N位二进制数可表示N个逻辑数据，或一个位串

�运算

• 按位进行

• 如:按位与 / 按位或 / 逻辑左移 / 逻辑右移 等

�识别

• 逻辑数据和数值数据在形式上并无差别，也是一串0/1序列，

机器靠指令来识别。

逻辑数据的编码表示

2009-5-26

�特点

• 是一种拼音文字，用有限几个字母可以拼写出所有单词

• 只要对有限个少量字母和一些数学符号、标点符号等辅助字符进行编码

• 所有西文字符集的字符总数不超过256个，所以使用7或8个二进位可表示

�表示（常用编码为7位ASCII码，必须熟悉数字、字母和空格(SP)的表示）

• 十进制数字：0/1/2…/9

• 英文字母：A/B/…/Z/a/b/…/z

• 专用符号：+/-/%/*/&/……

• 控制字符（不可打印或显示）

�操作

• 字符串操作，如:传送/比较 等

西文字符的编码表示

2009-5-26

�特点

• 汉字是表意文字，一个字就是一个方块图形。

• 汉字数量巨大，总数超过6万字，给汉字在计算机内部的表示、汉字的传输与

交换、汉字的输入和输出等带来了一系列问题。

�编码形式

• 有以下几种汉字代码：

 输入码：对每个汉字用相应的按键进行编码表示，用于输入。

 内码：用于在系统中进行存储、查找、传送等处理。

 字模点阵码或轮廓描述: 描述汉字的字模点阵或轮廓，用于显示或打印。

汉字及国际字符的编码表示

问题：西文字符有没有输入码？有没有内码？有没有字模点阵码或轮廓描述？

2009-5-26

�向计算机输入汉字的方式：

① 手写汉字联机识别输入，或者是印刷汉字扫描输入后自动识别，这两种方法

现均已达到实用水平。

② 用语音输入汉字，虽然简单易操作，但离实用阶段还相差很远。

③ 利用英文键盘输入汉字：

每个汉字用一个或几个键表示，这种对每个汉字用相应的按键进行的编码表示称为

汉字的“输入码”，又称外码。输入码的码元为键盘上的按键。这是最简便、最广泛

采用的汉字输入方法。

常用的方法有：五笔字型、智能ABC、微软拼音等

�使用汉字输入码的原因：

① 键盘面向西文设计，一个或两个西文字符对应一个按键，非常方便。

② 汉字是大字符集，专门的汉字输入键盘由于键多、查找不便、成本高等原因

而几乎无法采用。

汉字的输入码

2009-5-26

问题：西文字符常用的内码是什么？

其内码就是ASCII码。

对于汉字内码的选择，必须考虑以下几个因素：

① 不能有二义性，即不能和ASCII码有相同的编码。

② 尽量与汉字在字库中的位置有关系，便于汉字查找和处理。

③ 编码应尽量短。

国标码（国标交换码）

1981年我国颁布了《信息交换用汉字编码字符集 ·基本集》

(GB2312—80)。该标准选出6763个常用汉字，为每个汉字规定了

标准代码，以供汉字信息在不同计算机系统之间交换使用。

可在汉字国标码的基础上产生汉字机内码

字符集与汉字的内码

2009-5-26

�由三部分组成：

① 字母、数字和各种符号，包括英文、俄文、日文平假名与片假名、罗马字母、

汉语拼音等共687个；

② 一级常用汉字，共3755个，按汉语拼音排列；

③ 二级常用汉字，共3008个 ，因不太常用，所以按偏旁部首排列。

�汉字的区位码

• 码表由94行、94列组成，行号称为区号，列号称为位号，各占7位

• 区位码指出了该汉字在码表中的位置。区位码共14位，区号在左、位号在右

�汉字的国标码

• 每个汉字的区号和位号各自加上32（20H），得到它的“国标码”

• 国标码中区号和位号各占7位。在计算机内部，为方便处理与存储，前面添一个

0，构成一个字节。

GB2312-80字符集

2009-5-26

汉字内码
� 至少需2个字节才能表示一个汉字内码，为什么？

� 可在GB2312国标码的基础上产生汉字内码

• 将国标码的两个字节的第一位置“1”后得到内码

例如，汉字“大”的国标码为：3473h（0011 0100 0111 0011B），前面的34h和字符

“4”的ACSII码相同，后面的73h和字符“s”的ACSII码相同，将每个字节的最高位各

设为“1”后，就得到其内码：B4F3h (1011 0100 1111 0011B)。

� 国际字符集的必要性

• 不同地区使用不同的字符集内码，如中文GB2312/Big5、日文Shift-JIS/EUC-JP等。

一台安装了中文系统的计算机，若打开一个日文文件，便会出现乱码。为使所有国

际字符都能互换，必须创建一种涵盖全部字符的多字符集。通过对已有各种地区性

字符集规定使用范围来唯一定义各字符的编码。

� 国际多字符集，例如：

• 国际标准ISO/IEC 10646提出了一种包括全世界现代书面语言文字所使用的所有字符

的标准编码，每个字符用4个字节编码(UCS-4)和2字节编码(UCS-2) 。
• 我国（包括香港、台湾地区）与日本、韩国联合制订了一个统一的汉字字符集（

CJK编码），共收集了上述不同国家和地区的共约2万多汉字及符号，采用2字节编

码(即：UCS-2) ，现已被批准为国家标准(GB13000)。
• 微软公司新板的Windows操作系统(中文版)中已采用中西文统一编码，收集了中、

日、韩三国常用的约2万汉字，称为“Unicode”，采用2字节编码，与UCS-2一致 。
2009-5-26

� 为便于汉字的打印、显示等，每个汉字的字形都必须预先存在机内

� 一套汉字所有字符的形状描述信息集合在一起称为字形信息库，简称

字库(font)

� 不同字体(如宋体、仿宋、楷体、黑体等)对应不同字库

� 输出汉字时，先到字库中找到字形描述信息，然后送相应设备输出

� 字形主要有两种描述方法：

• 字模点阵描述（图像方式）

• 轮廓描述（图形方式）

- 直线向量轮廓

- 曲线轮廓（True Type字形）

汉字的字模点阵码和轮廓描述

2009-5-26

数据的基本宽度

�比特（bit）是计算机中处理、存储、传输信息的最小单位

�在计算机内部，二进制信息的计量单位是“字节”(Byte)，也称“位组”
• 现代计算机中，主存按字节编址

• 字节是最小可寻址单位(addressable unit)

�除了比特和字节之外，还经常使用“字”(word)作为单位

� “字”和 “字长”的概念不同

• “字长”指数据通路的宽度。

（数据通路指CPU内部的数据流经的路径以及路径上的部件，主要是CPU内部进行数据运

算、存储和传送的部件，这些部件的宽度基本上要一致，才能相互匹配。因此，“字长”
应该等于CPU内部总线的宽度、运算器的位数、通用寄存器的宽度等。 ）

• “字”用来表示被处理信息的单位，用来度量各种数据类型的宽度。

• 字和字长的宽度可以一样，也可不同。

例如，Intel微处理器从386开始就是32位字长，但其定义的“字”的宽度为16位

2009-5-26

数据量的度量单位

�存储二进制信息时的度量单位要比字节或字大得多

�经常使用的单位有：　

• “千字节”(KB)，1KB=210字节=1024B　
• “兆字节”(MB)，1MB=220字节=1024KB　
• “千兆字节”(GB)，1GB=230字节=1024MB　
• “兆兆字节”(TB)，1TB=240字节=1024GB　

� 在描述计算机通信中的带宽时，也会遇到上述信息单位，但其

值的大小与上述给出的值不同，这种情况下的值为：

• “千字节”(KB)，1KB=103字节=1000B　
• “兆字节”(MB)，1MB=106字节=1000KB　
• “千兆字节”(GB)，1GB=109字节=1000MB　
• “兆兆字节”(TB)，1TB=1012字节=1000GB　

2009-5-26

程序中数据类型的宽度

� 高级语言支持多种类型、多种长

度的数据

• 例如，C语言中Char类型的宽

度为1个字节，可表示一个字符

（非数值数据），也可表示一

个8位的整数（数值数据）

• 不同机器上表示的同一种类型

的数据可能宽度不同

� 必须能够提供相应的机器级数据

表示和相应的处理指令

(在第五章指令系统介绍具体指令)
4
8

4
8

float
double

84char*

1
2
4
8

1
2
4
4

char
short int

int
long int

Compaq Alpha机器典型32位机器C声明

C语言中数值数据类型的宽度 (单位：字节)

从表中看出：同类型数据并不是所

有机器都采用相同的宽度，分配的

字节数随机器的字长和编译器的不

同而不同。

Compaq Alpha是一个针对高端应用的64位
机器，即：字长为64位。

2009-5-26

数据的存储和排列顺序

� BYTE Addressing: (字节编址)
• 80年代开始，几乎所有机器都用字节编址

� ISAs设计时要考虑的两个问题：

• 如何从一个字节地址中取到一个32位的字？- 字的存放问题

• 一个字能否存放在任何字节边界？- 字的边界对齐问题

例如，若 int i = 0x01234567，存放在内存100号单元，则用“取数”指令访问100号
单元取出 i 时，必须清楚i的4个字节是如何存放的。

msb lsb
103 102 101 100 little endian word 100

100 101 102 103 big endian word 100

Word:

01 23 45 67

大端方式（Big Endian）: MSB所在的地址是数的地址

e.g. IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
小端方式（ Little Endian）: LSB所在的地址是数的地址

e.g. Intel 80x86, DEC VAX

2009-5-26

BIG Endian versus Little Endian
Example 1: Memory layout of a number ABCDH located in 1000

Example 2: Memory layout of a number 00ABCDEFH located in 1000
In Little Endian: AB

CD
1001
1000

In Big Endian: CD
AB

1001
1000

1000
1001
1002
1003

In Big Endian:
00
AB
CD
EF

In Little Endian:
00
AB
CD
EF

1003
1002
1001
1000

Example 3: Memory layout of a instruction located in 1000
假定小端机器x86中指令：mov AX, 0x12345(BX)
其中操作码mov为40H，寄存器AX和BX分别为

0001B和0010B，立即数占32位，则存放顺序为：

MOV AX BX 0x12345

1005
1004
1003
1002
1001
1000

00
01
23
45
12
40

若在大端机器上，则存放顺序如何？

40 1 2 00 01 23 45

40 1 2 45 23 01 00

2009-5-26

Byte Swap Problem（字节交换问题）

78
56
34

12 0

1
2
3

increasing
byte
address

Big Endian

12
34
56

78 0

1
2
3

Little Endian

�每个系统内部都是一致的，但在系统间通信时可能会发生问题！

�因为顺序不同，需要顺序转换

�任何像音频、视频和图像等文件格式或处理程序都涉及到字节顺序问题

ex. Little endian: GIF, PC Paintbrush, Microsoft RTF,etc
Big endian: Adobe Photoshop, JPEG, MacPaint, etc

上述存放在0号单元的数据（字）是什么？ 12345678H？ 78563412H？

两个存放方式不同的机器间程序移植或数据通信时，会发生什么问题？

2009-5-26

Alignment(对齐)

� 目前计算机所用数据字长一般为32位或64位，而存储器地址按字节编址

� 指令系统支持对字节、半字、字及双字的运算，也有位处理指令

� 各种不同长度的数据存放时，有两种处理方式:

• 按边界对齐 （假定字的宽度为32位，按字节编址）

- 字地址：4的倍数(低两位为0)

- 半字地址：2的倍数(低位为0)

- 字节地址：任意

• 不按边界对齐

坏处：可能会增加访存次数！

Alignment: 要求数据的地址是相应边界地址

2009-5-26

示例 假设数据顺序：字-半字-双字-字节-半字-……

按边界对齐按边界对齐

边界不对齐边界不对齐

00
04
08
12
16

0 字节 1字节 2字节 3字节

00
04
08
12
16

0 字节 1字节 2字节 3字节

Alignment(对齐)

如：int i, short k, double x, char c, short j,……

则：&i=0; &k=4; &x=8; &c=16; &j=18;……

则： &i=0; &k=4; &x=6; &c=14; &j=15;……

x：3个周期

j：2个周期

x：2个周期

j：1个周期

增加了访存次数！

2009-5-26

数据的检/纠错（Error Detect/Correct）
� 为什么要进行数据的错误检测与校正？

计算、存取和传送时，由于元器件故障或噪音干扰等原因会出现差错。措施：

(1) 从计算机硬件本身的可靠性入手，在电路、电源、布线等各方面采取必要的措施，提

高计算机的抗干扰能力；

(2) 采取相应的数据检错和校正措施，自动地发现并纠正错误。

� 如何进行错误检测与校正？

• 大多采用“冗余校验”思想，即除原数据信息外，还增加若干位编码，这些新

增的代码被称为校验位。

存储器
或

传输线路f

f
比较

纠正器

M

P

M’

P”

P’

M
出错信号

数据输出

数据输入

2009-5-26

数据的检/纠错
数据检/校过程：

数据被存入存储器或从源部件传输时，对数据M进行某种运算（用函数f 表示），以产生相
应的代码P= f (M)，这里P就是校验位。这样原数据信息和相应的校验位一起被存储或传送。

当数据被读出或传送到终部件时，和数据信息一起被存储或传送的校验位也被得到，用于检
错和纠错。假定读出后的数据为M’，通过同样的运算f 对M’也得到一个新的校验位P’=f (M’)
，假定原来被存储的校验位P取出后其值为P’’，将校验位P’’与新生成的校验位P’进行某种比

较，根据其比较结果确定是否发生了差错。

比较的结果为以下三种情况之一：

① 没有检测到错误，得到的数据位直接传送出去。

② 检测到差错，并可以纠错。数据位和比较结果一起送入纠错器，将正确数据位传送出去。

③ 检测到错误，但无法确认哪位出错，因而不能进行纠错处理，此时，报告出错情况。

存储器
或

传输线路f

f
比较

纠正器

M

P

M’

P”

P’

M
出错信号

数据输出

数据输入

BACK

2009-5-26

码字和码距

� 什么叫码距？

• 由若干位代码组成的一个字叫“码字”
• 两个码字中具有不同代码的位的个数叫做这两个码字间的“距离”
• 一种码制各码字间的最小距离称为“码距”，它就是这个码制的距离。

问题：“8421”码的码距是几？

2（0010）和3（0011）间距离为1，“8421”码制的码距为1。

� 数据校验中的“码字”是指数据位和校验位按某种规律排列得到的代码

� 码距与检错、纠错能力的关系

① 如果码距d为奇数，则能发现d-1位错，或者能纠正(d-1)/2位错。

② 如果码距d为偶数，则能发现d /2位错，并能纠正(d/2-1)位错。

� 常用的数据校验码有：

奇偶校验码、海明校验码和循环冗余校验码。

2009-5-26

奇偶校验码

基本思想：增加一位奇校验位（或偶校验位），然后将原数据和得到的校验位一起进

行存储或传送，对存取后或在传送的终部件得到的相应数据和校验位，再进行一次

编码，求出新校验位，最后根据得到的这个新校验位的值，确定是否发生了错误。

实现原理：假设将数据B=bn-1bn-2...b1b0从源部件传送至终部件。在终部件接收到的数

据为B’=bn-1’bn-2’...b1’b0’。
第一步：在源部件求出奇（偶）校验位P。

若采用奇校验，则P=bn-1⊕bn-2 ⊕...⊕b1⊕b0⊕1。
若采用偶校验，则P=bn-1⊕bn-2 ⊕...⊕b1⊕b0。

第二步：在终部件求出奇（偶）校验位P’。
若采用奇校验，则P’= bn-1’⊕bn-2 ’⊕...⊕b1’⊕b0’⊕1。
若采用偶校验，则P’=bn-1’⊕bn-2 ’⊕...⊕b1’⊕b0’。

第三步：计算最终的校验位P*，并根据其值判断有无奇偶错。

假定P在终部件接受到的值为P’’，则P*= P’⊕P”
① 若P*=1，则表示终部件接受的数据有奇数位错。

② 若P*=0，则表示终部件接受的数据正确或有偶数个错。

2009-5-26

奇偶校验法的特点

� 特点：

• 问题：奇偶校验码的码距是几？为什么？

• 码距d=2。在奇偶校验码中，若两个数中有奇数位不同，则它们相应

的校验位就不同；若有偶数位不同，则虽校验位相同，但至少有两

位数据位不同。因而任意两个码字之间至少有两位不同。

• 根据码距和纠/检错能力的关系，它只能发现奇数位出错，不能发现

偶数位出错，而且也不能确定发生错误的位置，不具有纠错能力。

� 优点：

• 开销小

• 适用于校验一字节长的代码，故常被用于存储器读写检查或按字节

传输过程中的数据校验

因为一字节长的代码发生错误时，1位出错的概率较大，两位以上

出错则很少，所以可用奇偶校验。

2009-5-26

海明校验码

� 由Richard Hamming于1950年提出，目前还被广泛使用。

� 主要用于存储器中数据存取校验。

� 基本思想：奇偶校验码对整个数据编码生成一位校验位。因此这种校

验码检错能力差，并且没有纠错能力。如果将整个数据按某种规律分

成若干组，对每组进行相应的奇偶检测，就能提供多位检错信息，从

而对错误位置进行定位，并将其纠正。

• 海明校验码实质上就是一种多重奇偶校验码。

� 处理过程：

• 最终比较时，按位进行异或操作，根据异或结果，确定是否有差错。

• 这种异或操作所得到的结果称为故障字（syndrome word）。显然，校验

码和故障字的位数是相同。

2009-5-26

校验码位数的确定

� 假定数据位数为n，校验码为k位，则故障字的位数也为k位。k位故障字所

能表示的状态最多是2K，每种状态可用来说明一种出错情况。若只有一位

错，则结果可能是：

• 数据中某一位错 (n种可能)

• 校验码中有一位错 (k种可能)

• 无错 (1 种可能)

要能对最多一位错的所有结果进行正确表示，则n和k必须满足下列关系：

2K≥1+n+k， 即：2K-1≥n+k

• 有效数据位数和校验码位数间的关系

• 从表中可以看出，当数据有8位时，校验码和故障字都应有4位。

说明：4位的故障字最多可以表示16种状态，而单个位出错情况最多只有

12种可能（8个数据位和4个校验位），再加上无错的情况，一共有13
种。所以，用16种状态表示13种情况应是足够了。

1+n+k种情况

2009-5-26

有效数据位数和校验码位数间的关系

单纠错 单纠错/双检错

数据位 检查位 增加百分率 检查位 增加百分率

8 4 50 5 62.5

16 5 31.25 6 37.5

32 6 18.75 7 21.875

64 7 10.94 8 12.5

128 8 6.25 9 7.03

256 9 3.52 10 3.91

2009-5-26

海明码的分组

� 基本思想: 数据位和校验位按某种方式排列为一个n+k的码

字，将该字中每一位的出错位置与故障字的数值建立关系，

通过故障字的值确定该码字中哪一位发生了错误，并将其取

反来纠正。

根据上述基本思想，按以下规则来解释各故障字的值。

规则1： 若故障字每位全部是0，则表示没有发生错误。

规则2：若故障字中有且仅有一位为1，则表示校验位中有一位出错，因而不

需纠正。

规则3：若故障字中多位为1，则表示有一个数据位出错，其在码字中的出错

位置由故障字的数值来确定。纠正时只要将出错位取反即可。

2009-5-26

海明码的分组

以8位数据进行单个位检错和纠错为例说明。

假定一个8位数据M= M8M7M6M5M4M3M2M1，其相应的4位校验位为

P=P4P3P2P1。根据规则将数据M和校验位P按一定的规律排到一个12位码字中。

据规则1，故障字为0000时，表示无错，因此没有和位置号0000对应的出错情况

，所以位置号从0001开始。

据规则2，故障字中有且仅有一位为1时，表示校验位中有一位出错，此时，故障

字只可能是0001、0010、0100、1000四种情况，我们将这四种状态分别代表校

验位中第P1、P2、P3、P4位发生错误的情况，因此，校验位P1、P2、P3、P4应分

别位于码字的第1、2、4、8位。

据规则3，将其他多位为1的故障字依次表示数据位M1~M8发生错误的情况。因此

，数据位M1~M8应分别位于码字的第0011(3)、0101(5)、0110(6)、0111(7)、
1001(9)、1010(10)、1011(11)、1100(12)位。即码字的排列为：

M8M7M6M5P4M4M3M2P3M1P2P1

这样，得到故障字S=S4S3S2S1的各个状态和出错情况的对应关系表，可根据这

种对应关系对整个数据进行分组。

2009-5-26

海明校验码分组情况

BACK

根据故障字S4S3S2S1的值确定哪位出错，因此，某位出错一定会影响与之相

对应的故障字中为1的位所在组的奇偶性。

码字：M8M7M6M5P4M4M3M2P3M1P2P1

例：若M1出错，则故障字为0011,所以
一定会改变S2和S1所在的分组。故M1
同时被分到第一组和第二组。

问题：若P1出错，则如何？若M8出错，则如何？ P1~0001，分在第一组，
M8~1100，分在第四组和第三组

2009-5-26

校验位的生成和检错、纠错

� 分组完成后，就可对每组采用相应的奇（偶）校验，以得到相应

的一个校验位。

� 假定采用偶校验 (即取校验位Pi，使对应组中有偶数个1)，则得

到校验位与数据位之间存在如下关系：

P1 = M1⊕M2⊕M4⊕M5⊕M7

P2 = M1⊕M3⊕M4⊕M6⊕M7

P3 = M2⊕M3⊕M4⊕M8

P4 = M5⊕M6⊕M7⊕M8

� 海明校验过程：

• 根据上面公式，可求出每一组对应的校验位Pi (i=1,2,3,4)
• 数据M和校验位P一起被存储，根据读出数据M’，得到新的校验位P’
• 读出校验位P’’与新校验位P’ 按位进行异或操作，得 故障字S = S4S3S2S1

• 根据S的值确定：无错、仅校验位错、某个数据位错

2009-5-26

海明码举例

假定一个8位数据M为：M8M7M6M5M4M3M2M1= 01101010，根据上

述公式求出相应的校验位为：

P1 = M1⊕M2⊕M4⊕M5⊕M7 =0⊕1⊕1⊕0⊕1=1

P2 = M1⊕M3⊕M4⊕M6⊕M7 =0⊕0⊕1⊕1⊕1=1

P3 = M2⊕M3⊕M4⊕M8=1⊕0⊕1⊕0=0

P4 = M5⊕M6⊕M7⊕M8=0⊕1⊕1⊕0=0

假定12位码字(M8M7M6M5P4M4M3M2P3M1P2P1)读出后的结果是:

(1) 数据位M’=M=01101010，校验位P’’=P=0011

(2) 数据位M’= 01111010，校验位P’’=P=0011

(3) 数据位M’=M=01101010，校验位P’’= 1011

要求分别考察每种情况的故障字。

(1) 数据位M’=M=01101010，校验位P’’=P=0011，即：所有位都无错。

这种情况下，因为M’=M，所以P’= P， 因此, S = P’’⊕P’=P⊕P = 0000。

2009-5-26

海明码举例

(2) 数据位M’= 01111010，校验位P’’=P=0011，即：数据位第5位(M5)错。

这种情况下，对M’生成新的校验位P’为：

P1 ’= M1’⊕M2’⊕M4’⊕M5’⊕M7’=0⊕1⊕1⊕1⊕1=0
P2’ = M1’⊕M3’⊕M4’⊕M6’⊕M7’ =0⊕0⊕1⊕1⊕1=1
P3 ’= M2’⊕M3’⊕M4’⊕M8’=1⊕0⊕1⊕0=0
P4’ = M5’⊕M6’⊕M7’⊕M8’=1⊕1⊕1⊕0=1

故障字S为：

S1= P1 ’⊕ P1’’= 0⊕1=1
S2= P2 ’⊕ P2’’=1⊕1=0
S3= P3 ’⊕ P3’’=0⊕0=0
S4= P4 ’⊕ P4’’=1⊕0=1

根据故障字的数值1001，可以判断出发生错误的位是在12位码字的第

1001位(即：第9位)，在这一位上排列的是数据位M5，所以检错正确,
纠错时，只要将码字的第9位（即：第5个数据位）取反即可。

2009-5-26

海明码举例

(3) 数据位M’=M=01101010，校验位P’’= 1011，

即：校验码第4位(P4)错。

这种情况下，因为M’=M，所以P’= P，因此故障位S为：

S1= P1 ’⊕ P1’’= 1⊕1=0

S2= P2 ’⊕ P2’’=1⊕1=0

S3= P3 ’⊕ P3’’=0⊕0=0

S4= P4 ’⊕ P4’’=0⊕1=1

根据故障字的数值1000，可以判断出发生错误的位是在12位 码

字的第1000位(即：第8位)，在这一位上排列的是校验位P4，所

以检错正确，不需纠错。

2009-5-26

单纠错和双检错码
� 单纠错码（SEC）

• 问题：上述(n=8/k=4)海明码的码距是几？

• 码距d=3。因为，若有一位出错，则因该位至少要参与两组校验位的生成，因

而至少引起两个校验位的不同。

• 根据码距与检错、纠错能力的关系，知：这种码制能发现两位错，或对单个
位出错进行定位和纠错。这种码称为单纠错码（SEC）。

� 单纠错和双检错码（SEC-DED）

• 如果校验码同时具有发现两位错和纠正一位错的能力，则称为单纠错和双检
错码（SEC-DED）。

• 一般半导体存储器都采用这种校验码进行数据校验。

• 若要使上述单纠错码成为SEC-DED ，则码距需扩大到d= 4。为此，还需要增
加一位校验位P5，将P5排列在码字的最前面，即：
P5M8M7M6M5P4M4M3M2P3M1P2P1，并使得数据中的每一位都参与三个校验
位的生成。从表中可看出除了M4 和M7参与了三个校验位的生成外，其余位
都只参与了两个校验位的生成。因此P5按下式求值：

P5= M1⊕M2⊕M3⊕M5⊕M6⊕M8

当任意一个数据位发生错误时，必将引起三个校验位发生变化，所以码距为4

2009-5-26

SEC-DED的检错／纠错规则

引入P5后，故障字S也增加了一位，即S=S5S4S3S2S1，根据S5S4S3S2S1的取值情况，

可按如下规则发现两位错并纠正一位错。

① 当S5S4S3S2S1为00000时，表明无错。

② 当S5S4S3S2S1中仅一位不为0时，表明由S指定的位置上那个校验位发生了错误，

或是在数据和校验位中有三位同时出错，但后面这种可能性非常小，所以一般认为

发生了前一种情况。

③ 当S5S4S3S2S1中有两位不为0时，表明数据和校验位中有两位同时出错，此时只

能发现这种错误，但无法确定是哪两位错。

④ 当S5S4S3S2S1中有三位不为0时，表明有一个数据位发生了错误，或是三个校验

位同时出错，但后面这种可能性非常小，所以一般认为发生了前一种情况。此时，

出错的位置由S4S3S2S1的数值指定。

⑤ 当S5S4S3S2S1中有四位或五位都不为0时，表明出错情况严重，系统可能出现故

障，应检查系统硬件的正确性。

2009-5-26

循环冗余码

循环冗余校验码（Cyclic Redundancy Check），简称CRC码

• 具很强的检错、纠错能力

• 用于大批量数据存储和传送(如：外存和通信)中的数据校验

奇偶校验码是在每个字符信息后增加一位校验位进行数据校验的，这样对

大批量传输数据进行校验时，会增加大量的额外开销，尤其是在网络通信

中，传输的数据信息都是二进制比特流，因而没有必要将数据再分解成一

个个字符，也就无法采用奇偶校验码，因此，通常采用CRC码进行校验。

• 通过某种数学运算来建立数据和校验位之间的约定关系。

奇偶校验码和海明校验码都是以奇偶检测为手段的。

2009-5-26

CRC码的检错方法

基本思想：

• 假设要进行校验的数据信息M(x)为一个n位的二进制数据，将M(x)左移k位后

，用一个约定的“生成多项式”G(x)相除，G(x)是一个k+1位的二进制数，相

除后得到的k位余数就是校验位。这些校验位拼接到M(x)的n位数据后面，形

成一个n+k位的代码，我们称这个代码为循环冗余校验 (CRC) 码，也称

（n+k,n）码。

• 一个CRC码一定能被生成多项式整除，所以当数据和校验位一起送到接受端

后，只要将接受到的数据和校验位用同样的生成多项式相除，如果正好除尽

，表明没有发生错误；若除不尽，则表明某些数据位发生了错误。

数据(n位) 校验位(k位)

CRC码(n+k位)
2009-5-26

循环冗余码举例

校验位的生成：用一个例子来说明校验位的生成过程。

• 假设要传送的数据信息为：100011，即报文多项式为：

M(x)= x5 + x + 1。数据信息位数n=6。

• 若约定的生成多项式为：G(x)= x3+ 1，则生成多项式位数为4位，所

以校验位位数k=3，除数为1001。

• 生成校验位时，用x3.M(x)去除以G(x)，即：100011000÷1001。

• 相除时采用“模２运算”的多项式除法。

2009-5-26

循环冗余码举例

100011000
100111

1001
0011
0000

0111
0000

1110
1001
1110
1001
1110
1001

111

1001

X3.M(x)÷G(x)＝(x8+ x4 + x3)÷(x3 + 1)

校验位为111，CRC码为100011 111。如果要校验

CRC码，则可将CRC码用同一个多项式相除，若

余数为0，则说明无错；否则说明有错。例如，若

在接收方的CRC码也为100011 111时，用同一个多

项式相除后余数为0。若接收方CRC码不为100011
111时，余数则不为0。

(模２运算不考虑加法进位和减法借位，上商的原

则是当部分余数首位是１时商取１，反之商取０。

然后按模２相减原则求得最高位后面几位的余数。

这样当被除数逐步除完时，最后的余数位数比除数

少一位。这样得到的余数就是校验位，此例中最终

的余数有3位。)

2009-5-26

第二讲小结

�非数值数据的表示

• 逻辑数据用来表示真/假或N位位串，按位运算

• 西文字符：用ASCII码表示

• 汉字：汉字输入码、汉字内码、汉字字模码

�数据的宽度

• 位、字节、字（不一定等于字长），K/M/G/…有不同的含义

�数据的存储排列

• 大端方式：用MSB存放的地址表示数据的地址

• 小端方式：用LSB存放的地址表示数据的地址

• 按边界对齐可减少访存次数

�数据的纠错和检错

• 奇偶校验：适应于1字节长数据的校验

• 海明校验：分组后，各组内用奇偶校验，用于内存储器数据的校验

• 循环冗余校验：用在通信和外存中，适合于大批量数据的校验

2009-5-26

附录： Decimal / Binary（十 / 二进制数）

X The binary number 11001 in powers of 2 :

X 用一个下标表示数的基（ radix / base）
110012 = 2510

1 × 2 4 + 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0

= 16 + 8 + 0 + 0 + 1 = 25

X The decimal number 5836.47 in powers of 10:
5 × 10 3 + 8 × 10 2 + 3 × 10 1 + 6 × 10 0

+ 4 × 10 -1 + 7 × 10 -2

2009-5-26

附录： Octal / Hexadecimal (八 / 十六进制数)

23=8 24=16
计算机用二进制表示所有信息！

为什么要引入 8 / 16进制？

8 / 16进制是二进制的简便表示。便

于阅读和书写！

它们之间对应简单，转换容易。

在机器内部用二进制，在屏幕或其他
外部设备上表示时，转换为8/16进制

数，可缩短长度

2009-5-26

附录： Conversions of numbers
(1) R进制数 => 十进制数

按“权”展开 (a power of R)

例1: (10101.01)2=1x24+1x 22+1x20+1x2-2=(21.25)10

例2: (307.6)8=3x82+7x80+6x8-1=(199.75)10

例1: (3A. 1)16=3x161+10x160+1x16-1=(58.0625)10

(2)十进制数 => R进制数

整数部分和小数部分分别转换

① 整数(integral part)----“除基取余，上右下左”

② 小数(fractional part)----“乘基取整，上左下右”

2009-5-26

例1:(835.6785)10=(1101000011.1011)2

整数----“除基取余，上右下左” 小数----“乘基取整，上左下右”

附录： Decimal to Binary Conversions

2009-5-26

例2:(835.63)10=(1503.50243…)8

整数----“除基取余，上右下左” 小数----“乘基取整，上左下右”
有可能乘积的小数部分总得不
到0 ，此时得到一个近似值。

附录：Decimal to Binary Conversions

2009-5-26

(3) 二/八/十六进制数的相互转换

① 八进制数转换成二进制数

(13.724) 8=(001 011 . 111 010 100) 2=(1011.1110101) 2

② 十六进制数转换成二进制数

(2B.5E)16 = (00101011 . 01011110) 2 = (101011.0101111) 2

③ 二进制数转换成八进制数

(0.10101) 2 = (000 . 101 010) 2 = (0.52) 8

④ 二进制数转换成十六进制数

(11001.11) 2 = (0001 1001 . 1100) 2 = (19.C) 16　　

附录： Conversions of numbers

2009-5-26

第二章作业

2（1）、2（6）、2（7）、4、5、6、7、8、9、11、13、14、
17、18、19、20

其他未列题目请自行选择练习

作业下星期二（3月6号）交

