
2009 Altera亚洲创新设计大赛

基于 FPGA 的 MIPS32 流水线处理器的设计与实现

Design and Implementation of the MIPS32

Pipeline Processor Based on FPGA

参赛院校：南京大学

参赛学生：许 佳

薛 双 百

许 信 辉

指导教师：张 泽 生

目录

一 设计概述.. 4

1.1 设计背景 ... 4

1.2 作品介绍 ... 5

1.3 适用范围 ... 5

1.4 器件选择 ... 5

二 功能描述.. 6

2.1 指令集 ... 6

2.2 处理器功能： ... 8

三 性能参数.. 9

四 设计结构.. 9

五 设计方法... 11

5.1 取指（IF） .. 11

5.2 译码（ID） .. 12

5.3 执行（EXE） ... 13

5.4 存储（MEM） ... 19

5.5 写回（WB） .. 20

5.6 转发 .. 20

5.7 冒险检测.. 20

六 设计特点... 21

6.1 指令的兼容性和完备性.. 21

6.2 高效的运算部件设计.. 21

6.3 先进的体系结构.. 21

6.4 FPGA 验证 ... 21

七 总结... 22

附录：.. 22

Trap.. 22

Condition[2:0].. 23

Branch.. 24

LLBitWrite.. 24

MemOp[2:0].. 25

MemWrite（高电平有效）.. 26

RegWrite.. 26

MemRead... 27

Jump[1:0]... 28

MainHiWrite... 29

MainLoWrite... 29

HiRead.. 29

LoRead.. 30

DivOp[1:0].. 30

MulOp... 30

MemDataSrc[1:0]... 31

ExResultSrc[2:0].. 31

ALUSrcA... 33

ALUSrcB... 33

ALUOp[3:0].. 34

RdSelect[1:0]... 36

ShiftAmountSel.. 37

ShiftOp[1:0].. 37

ExtendI[1:0].. 37

一 设计概述

1.1 设计背景

MIPS（Microprocessor without interlocked piped stages，无内部互锁流水级

的微处理器）是一种最早的，最成功的RISC（Reduced Instruction Set Computer，精

简指令集计算机）结构的处理器之一，其机制是尽量利用软件办法避免流水线中的数据

相关问题。和英特尔采用的复杂指令系统计算结构（CISC）相比，RISC具有设计更简单、

设计周期更短等优点，并可以应用更多先进的技术，开发更快的下一代处理器。相对的

简洁对于MIPS来说是一种商业需要，MIPS是出现最早的商业RISC架构之一。该架构得到

了工业领域内最大范围的具有影响力的制造商们的支持：从生产专用集成电路核心

（ASIC Cores）的厂家（LSI Logic，Toshiba，Philips，NEC)到生产低成本CPU的厂家

（NEC，Toshiba，IDT），从低端64位处理器生产厂家（IDT，NKK，NEC）到高端64位处

理器生产厂家（NEC，Toshiba，IDT）。

MIPS公司设计RISC处理器始于二十世纪八十年代初， 1986年推出R2000处理器， 1988

年推R3000处理器， 1991年推出第一款64位商用微处器R4000。之后又陆续推出R8000 （于

1994年）、R10000（于1996年）和R12000（于1997年）等型号。随后，MIPS公司的战略

发生变化，把重点放在嵌入式系统。1999年，MIPS公司发布MIPS32和MIPS64架构标准，

为未来MIPS处理器的开发奠定了基础。新的架构集成了所有原来MIPS指令集，并且增加

了许多更强大的功能。MIPS公司陆续开发了高性能、低功耗的32位处理器内核（core）

MIPS324Kc与高性能64位处理器内核MIPS64 5Kc。2000年，MIPS公司发布了针对MIPS32

4Kc的版本以及64位MIPS 64 20Kc处理器内核。

MIPS32 4KcTM 处理器是采用MIPS技术特定为片上系统(System-On-a-Chip)而设计

的高性能、低电压 32位MIPS RISC 内核。采用MIPS32TM体系结构，并且具有R4000存储

器管理单元(MMU)以及扩展的优先级模式，使得这个处理器与目前嵌入式领域广泛应用

的R3000和R4000系列(32位)微处理器完全兼容。新的 64 位 MIPS 处理器是RM9000x2，

从“x2”这个标记判断，它包含了不是一个而是两个均具有集成二级高速缓存的64位处

理器。RM9000x2 主要针对网络基础设施市场，具有集成的 DDR 内存控制器和超高速的

Hyper Transport I/O 链接。处理器、内存和 I/O均通过分组交叉连接起来的，可实现

高性能、全面高速缓存的统一芯片系统。除通过并行处理提高系统性能外，RM9000x2 还

通过将超标量与超流水线技术相结合来提高单个处理器的性能。

MIPS系列处理器已授权相当多厂商生产，此系列产品分布相当广泛，高阶有64bit

等级用在伺服器的产品线，低阶的也有32bit等级应用在嵌入式的场合，此系列的处理

器擅长使用快取及提升汇流排速率等技术来提升整体效能，Pocket PC多使用授权NEC生

产的VR4100系列。可以从任何地方，如Sony， Nintendo的游戏机，Cisco的路由器和SGI

超级计算机，看见MIPS产品在销售。目前随着RISC体系结构遭到x86芯片的竞争，MIPS

有可能是起初RISC CPU设计中唯一的一个在本世纪盈利的。和英特尔相比，MIPS的授权

费用比较低，也就为除英特尔外的大多数芯片厂商所采用。

MIPS的系统结构及设计理念比较先进， 其指令系统经过通用处理器指令体系MIPS I、

MIPS II、MIPS III、MIPS IV到MIPS V，嵌入式指令体系MIPS16、MIPS32到MIPS64的发

展已经十分成熟。 在设计理念上MIPS强调软硬件协同提高性能， 同时简化硬件设计。 MIPS

作为RISC体系结构中最优雅的一种，虽然自身的优雅设计并不能保证在充满竞争的市场

上长盛不衰，但是MIPS微处理器却经常能在处理器的每个技术发展阶段保持速度最快的

同时保持设计的简洁，使其具有强劲的市场竞争力。

1.2 作品介绍

本设计选择和MIPS指令集兼容，能实现其中的21条算术运算指令，13条跳转指令，

14条存取指令，8条逻辑运算指令，6条移位指令，6条数据移动指令，以及14条自陷指

令，本设计致力于实现所有的定点运算指令，并扩展实现浮点运算指令。

本设计采用五级流水线架构：IF、ID、EXE、MEM和WB。EXE阶段用到的运算部件包

括超前进位加法器、桶形移位器、基于基4Booth编码和Wallace树压缩的乘加器以及基

于SRT的除法器。同时本设计也将给出流水线中结构、数据和控制相关性的解决方案。

本设计还采用高速缓存（cache）以及用于控制中断异常和管理cache的协处理器，

兼容avalon总线。本设计的扩展功能包括超标量流水线（多发射）、分支预测器和浮点

运算单元。

1.3 适用范围

本设计适用于 MIPS 系列处理器的众多应用领域：多媒体、数字电视、网络通信、

家用电子和汽车电子。此外，本设计亦可用于高校中的计算机组成原理教学与实验，这

也是本作品的来源。在将本作品完善后，本设计（或部分）可用于产业界 CPU 的设计与

生产。

1.4 器件选择

本设计采用 DE2-70 Development and Education Board，配备了数量高达 70,000

个逻辑单元的 Altera Cyclone II 2C70，包含了 2-Mbyte SSRAM、两个 32-Mbyte SDRAM

和 8-Mbyte 闪存等大容量内存组件。同时 DE2-70 还集成了 SD 卡界面、带有 A 类和 B

类 USB 接口的 USB 主从控制器、 10/100 Ethernet Controller with a connector、 RS-232

transceiver and 9-pin connector 和 PS/2 mouse/keyboard connector 等接口，完全

承袭了 Altera DE2 多媒体平台丰富的多媒体、储存及网络等应用接口的优点。

图 1 DE2-70 Development and Education Board

二 功能描述

2.1 指令集

本指令集与 The MIPS32® Instruction Set Revision 2.62 兼容，未标记星号的为基本

指令，这部分指令目前的设计中已经考虑到，将会予以实现；标记星号的为扩展指令，

在今后的设计中酌情添加，我们的目标是实现完整的 MIPS32 指令集。

表 1 算术运算指令

add 加法（带溢出位） addi 立即数加法（带溢出位）

addiu 立即数加法（不带溢出位） addu 加法（不带溢出位）

clo 计算前导一 clz 计算前导零

div 除法（有符号） divu 除法（无符号）

madd 乘加（有符号） maddu 乘加（无符号）

msub 乘减（有符号） msubu 乘减（无符号）

mul 乘法（结果写到通用寄存器） mult 乘法（有符号）

multu 乘法（有符号） slt 小于置一（有符号）

slti 立即数小于置一（有符号） sltiu 立即数小于置一（无符号）

sltu 小于置一（无符号） sub 减法（有符号）

subu 减法（无符号）

*seb 符号扩展字节 *seb 符号扩展半字

表 2 分支跳转指令

bal 转移并链接 beq 相等转移

bgez 大于等于零转移 bgezal 大于等于零转移并链接

bgtz 大于零转移 blez 小于等于零转移

bltz 小于零转移 bltzal 小于等于零转移并链接

bne 不相等转移 j 无条件跳转

jal 无条件跳转并链接 jalr 无条件跳转并链接寄存器

jr .寄存器跳转

*B 无条件转移 *jalrhb 无条件跳转并链接到冒险阻塞

寄存器

*jr.hb 冒险阻塞寄存器跳转

表 3 存取控制指令

lb 取字节（有符号） lbu 取字节（无符号）

lh 取半字（有符号） lhu 取半字（无符号）

ll 取链接字 lw 取字

lwl 取左半字 lwr 取右半字

sb 保存字节 sc 保存条件字

sh 保存半字 sw 保存字

swl 保存左半字 swr 保存右半字

*pref 预取 *sync 同步访存

*synci 同步缓存

表 4 逻辑运算指令

and 与 andi 立即数与

lui 取立即数的高 16位 nor 或非

or 或 ori 立即数或

xor 异或 xori 立即数异或

表 5 数据移动指令

mfhi 从高位移 mflo 从低位移

movn 非零条件移动 movz 零条件移动

mthi 移到高位寄存器 mtlo 移到低位寄存器

*movf 浮点假条件移动 *movt 浮点真条件移动

*rdhwr 读硬件寄存器

表 6 移位指令

sll 逻辑左移 sllv 逻辑左移变量

sra 算术右移 srav 算术右移变量

srl 逻辑右移 srlv 逻辑右移变量

*rotr 循环右移 *rotrv 循环右移变量

表 7 指令控制指令

nop 空指令

*ehb 执行冒险阻塞 *pause 等待 LL位来清除

*ssnop 超标量空指令

表 8 自陷指令

break 跳出点 syscall 系统跳用

teq 相等自陷 teqi 立即数相等自陷

tge 大于等于自陷 tgei 立即数大于等于自陷

tgeiu 无符号立即数大于等于自陷 tgeu 无符号大于等于自陷

tlt 小于自陷 tlti 立即数小于自陷

tltiu 无符号立即数小于自陷 tltu 无符号小于自陷

tne 不等自陷 tnei 立即数不等自陷

2.2 处理器功能：

我们的最低目标：

Ø 完整的5级单流水数据通路，实现较为完整的MIPS指令集

Ø 异常和中断处理机制，高级缓存，虚拟内存管理机制；

Ø 兼容avalon总线，以便在fpga开发一些简单的应用，来验证设计的正确性。

我们的中长期目标（按计划的实现顺序排列）：

Ø 实现寄存器重命名机制，用于支持乱序（多）发射，开发指令级并行；

Ø 实现分支预测

Ø 运行一个开源的嵌入式操作系统

目前情况下，我们的最低目标已基本完成。如能进入复赛，我们将在暑假对该处理

器进行不断完善，争取在FPGA上实现更多功能。

三 性能参数

四 设计结构

五级流水线是MIPS系列处理器最经典的流水线设计方案，它把数据通道分为上文所

述的取指（IF）、译码（ID）、执行（EXE）、存储（MEM）和写回（WB）等五个流水阶

段。指令在译码阶段生成所有的控制信号；4个流水段寄存器用于在指令执行的各阶段

间传递必要的数据和控制信息。转发单元保证进入ALU参与运算的数据总是最“新”的。

冒险检测单元在必要的时刻阻塞流水线，或者清除保存于流水段寄存器中的指令；该单

元还根据流水线的状态决定下条指令的地址。

图2 MIPS32处理器数据通路图

VCC clock INPUT

VCC

LLBit

INPUT

VCC

ExceptionPos [2.. 0]

INPUT
VCC

CacheHit

INPUT

trap

OUTPUT

V

OUTPUT

ExceptionTyp e[3.. 0]

OUTPUT

LLBitWrite

OUTPUT

data1 x[31. .0]
data0 x[31. .0]

sel

result[31.. 0]

ID_Fo rward

inst5

data1 x[31. .0]
data0 x[31. .0]

sel

result[31.. 0]

ID_Fo rward

inst6

data3 x[31. .0]
data2 x[31. .0]
data1 x[31. .0]
data0 x[31. .0]

sel[1..0]

result[31.. 0]

nextPC_Mux

inst

data2 x[31. .0]
data1 x[31. .0]
data0 x[31. .0]

sel[1..0]

result[31.. 0]

forwa rd_Mux

inst12

data2 x[31. .0]
data1 x[31. .0]
data0 x[31. .0]

sel[1..0]

result[31.. 0]

forwa rd_Mux

inst13

data1 x[31. .0]
data0 x[31. .0]

sel

result[31.. 0]

AluSrc_Mux

inst14

data1 x[31. .0]
data0 x[31. .0]

sel

result[31.. 0]

AluSrc_Mux

inst15

a[31.. 0]

b[31.. 0]

AluOp[3.. 0]

result[31.. 0]

Z C V
Less

ALU

inst16

0 32

consta ntZero

inst17

writeEnable

clock

dataI n[31 ..0] dataO ut[3 1..0] Hi

inst20

clock

writeEnable

dataI n[31 ..0] dataO ut[3 1..0] Lo

inst21

data7 x[31. .0]
data6 x[31. .0]
data5 x[31. .0]
data4 x[31. .0]
data3 x[31. .0]
data2 x[31. .0]
data1 x[31. .0]
data0 x[31. .0]

sel[2..0]

result[31.. 0]

WBDataSrc_Mux

inst23

data2 x[31. .0]
data1 x[31. .0]
data0 x[31. .0]

sel[1..0]

result[31.. 0]

DataSrc

inst26

data2 x[31. .0]
data1 x[31. .0]
data0 x[31. .0]

sel[1..0]

result[31.. 0]

DataSrc

inst27

data1 x[4.. 0]
data0 x[4.. 0]

sel

result[4..0]

shiftAmo unt_Mux

inst28

ShiftTyp e[1.. 0] ShiftAmount[4.. 0] dataI n[31 ..0] dataO ut[3 1..0] ShiftUnit

inst25

data1 x[31. .0]
data0 x[31. .0]

sel

result[31.. 0]

WriteBackDat a_Mux

inst33

data1 x[31. .0]
data0 x[31. .0]

sel

result[31.. 0]

forSC_Mux

inst45
data3 x[31. .0]
data2 x[31. .0]
data1 x[31. .0]
data0 x[31. .0]

sel[1..0]

result[31.. 0]

ExI_Mux

inst41

data2 x[31. .0]
data1 x[31. .0]
data0 x[31. .0]

sel[1..0]

result[31.. 0]

DataToMem_Mux

inst49

data1 x[4.. 0]
data0 x[4.. 0]

sel

result[4..0]

rt_r d_Mux

inst50

PC[31..0]

ExI[31..0]

branc hAdd ress[3 1..0]

BranchAd dress _Adder

inst53

PC[31..0]
PCplus4[3 1..0]

PCIncreas e

inst22

MemAd dres s[31. .0] FirstByte [1.. 0] getFi rstByte

inst51

PC[31..0]

Stall Flush

Instru ction[31.. 0]

Clock

PCOut[31. .0]

Instru ctionO ut[3 1..0]

Rs[4..0]
Rt[4..0]
Rd[4..0]

IF_ID

inst55

ReadAdd ress 1[4.. 0]

ReadAdd ress 2[4.. 0]

WriteAdd ress[4 ..0]

WriteDat a[31. .0]

AccessTyp e[3.. 0]

Clock Reset

WriteEnabl e

s0[31. .0] s1[31. .0] s2[31. .0] s3[31. .0] s4[31. .0] ReadDat a2[31..0]

ReadDat a1[31..0]

RegStack

inst56

Instru ction[31.. 0]
ZeroExI[31 ..0]
SignExI[31.. 0]

SignExAndShift[3 1..0]
ForLUI[3 1..0]

getExI

inst60

Reset

PC[31..0]
WriteAdd ress[3 1..0]
WriteDat a[31. .0]
WriteEnabl e Clock

Instru ction[31.. 0]
test1[31..0] test2[31..0] test3[31..0] test4[31..0] test5[31..0]

Instru ctionC ache

inst4

ExI[31..0]
PC[31..0]

Rs[4..0]
Rt[4..0]

JumpAd dress [31. .0]

getJumpAdd ress

inst7

Instru tion[31.. 0]

ExResultSrc[2 ..0]

test2 test3 test4 test5 test6 test7 test8

Jump[1..0]

LLBitWrite

ExceptionTyp e[3.. 0]

MemR ead

Branch

Tra p
Conditio n[2.. 0]
RegWrite

MemW rite

MemO p[2. .0]

MainHiWrit e

MainL oWrite

DivOp[1.. 0]

MulOp[2..0]

ALUOp[3.. 0]

ALUSrcA

ALUSrcB

MemD ataSrc[1..0]

ShiftAmountSel

ShiftOp[1 ..0]

RdSelect

MainL oRea d
MainHiRe ad

ExtendISel[1..0]

SCFlag

Decode

inst1

PC[31..0]

ExresultSrc[2..0]

Jump[1..0]
MainL oRea d
MainHiRe ad
LLBitWrite

ExceptionTyp e[3.. 0]

MemR ead

Branch

Tra p
Conditio n[2.. 0]
RegWrite

MemW rite

MemO p[2. .0]

MainHiWrit e

MainL oWrite

DivOp[1.. 0]

ALUOp[3.. 0]

ALUSrcA

ALUSrcB
MemD ataSrc[1..0]

ShiftAmountSel

ShiftOp[1 ..0]

RdSelect

ExI[31..0]

A[31..0]

B[31..0]

Clock

Flush Stall

Rs[4..0]
Rt[4..0]
Rd[4..0]

MulOp[2..0]

SCFlag

PCOut[31. .0]

ExresultSrc Out[2 ..0]

JumpOut[1 ..0]
MainL oRea dOut
MainHiRe adOu t
LLBitWriteO ut

ExceptionTyp eOut[3..0]

MemR eadOut

BranchOut

Tra pOut
Conditio nOut[2..0]

RegWriteOut

MemW riteOut

MemO pOu t[2.. 0]

MainHiWrit eOut

MainL oWrite Out
DivOpOut[1..0]

ALUOpOut [3..0]

ALUSrcAOut

ALUSrcBOut
MemD ataSrc Out[1 ..0]

ShiftAmountSelOut

ShiftOpOu t[1.. 0]
RdSelectOu t

AOut[31. .0]

BOut[31. .0]

RsOut[4. .0]
RtOut[4 ..0]
RdOut[4..0]

ExIOut[31..0]

MulOpOut[2 ..0]

SCFlagOu t

ID_EX

inst8

EX_MEM_RW

MEM_WB_RW

ID_EX_Rs[4.. 0]
ID_EX_Rt[4.. 0]

IF_ID _Rs[4.. 0]
IF_ID _Rt[4.. 0]

MEM_WB_Rd [4..0]

EX_MEM_Rd[4..0]
ID_Fo rwardA
ID_Fo rwardB

EX_Forwa rdA[1 ..0] EX_Forwa rdB[1 ..0]

Forw ardU nit

inst11

I[31.. 0] shiftAmo unt[4 ..0]
getShiftAm ount Fr omI

inst9

rs[31. .0] shiftAmo unt[4 ..0]

getShiftAm ount Fr omRs

inst2

LLBit LLBitOut[31.. 0]
extendLLBit

inst24

Z
Less

Branch

Tra p
Conditio n[2.. 0]
RegWrite

MemW rite

LLBit

BranchOut

Tra pOut

RegWriteOut

MemW riteOut

Conditio nCheck

inst3

fromMul 0
fromDiv 1
fromMain 2

Parameter Value

MainL oWrite
MulLoW rite
DivLoWrite

LoWrite

LoDataS rc[1.. 0]

getLoD ataSrc

inst31

fromMul 0
fromDiv 1
fromMain 2

Parameter Value

MainHiWrit e
MulHiWrite
DivHiWrite

HiWrite

HiDataSrc[1 ..0]

getHiDat aSrc

inst32

MemO p[2. .0]
FirstByte [1.. 0]

WriteBack Type[3..0]

GetWriteB ackTy pe

inst48

Address[31.. 0]

MemW rite MemO p[2. .0]

Clock Reset DataIn[31.. 0]
DataOu t[31. .0]

DataCac he

inst54

MemD ata[31..0]

Stall Flush

MemR ead

RegWrite

ExResult[31 ..0]

Rd[4..0] Clock

WriteBack Type[3..0]

MemD ataOut[3 1..0]

MemR eadOut

RegWriteOut

ExResultOut [31.. 0]

RdOut[4..0]

WriteBack TypeO ut[3 ..0]

MEM_WB

inst46

Z

Less
V

Stall Flush

LLBitWrite

ExceptionTyp e[3.. 0]

MemR ead

Branch

Tra p
Conditio n[2.. 0]
RegWrite

MemW rite

MemO p[2. .0]

BranchAd dress [31. .0]

DataToMem[3 1..0]

Rd[4..0] Clock

ExResult[31 ..0]

SCFlag

ZOut

LessOu t
VOut

LLBitWriteO ut

ExceptionTyp eOut[31.. 0]

MemR eadOut

BranchOut

Tra pOut
Conditio nOut[2..0]

RegWriteOut

MemW riteOut

MemO pOu t[2.. 0]

BranchAd dress Out[31.. 0]

DataToMemOu t[31 ..0]

RdOut[4..0]

ExResultOut [31.. 0]

SCFlagOu t

EX_MEM

inst34

Div

inst30

a[31.. 0] INPUT
b[31.. 0] INPUT
ready INPUT
hiWrite OUTPUT
loWrite OUTPUT

I/O Type

MUL

inst18

test1 INPUT
test2 INPUT
clock INPUT
MulOp[2..0] INPUT
A[31..0] INPUT

... ...

I/O... Type...

Ris

inst57

EX_MEM_Branch INPUT
ID_EX_Jump[1.. 0] INPUT
ID_EX_HiAccess INPUT
ID_EX_LoAccess INPUT
IF_ID _Rs[4.. 0] INPUT
IF_ID _Rt[4.. 0] INPUT
ID_EX_MemRead INPUT
ID_EX_Rt[4.. 0] INPUT
IF_ID _Flus h OUTPUT
IF_ID _Stall OUTPUT
ID_EX_Flus h OUTPUT
ID_EX_Stall OUTPUT
EX_MEM_Fl ush OUTPUT
EX_MEM_Stall OUTPUT
MEM_WB_ Flush OUTPUT
MEM_WB_Stall OUTPUT
PCSrc[2..0] OUTPUT
ExceptionPos [2.. 0] OUTPUT
CacheHit OUTPUT
ID_EX_MulO p[2.. 0] OUTPUT
ID_EX_DivOp[1 ..0] OUTPUT
DivReady OUTPUT
MulReady[1. .0] OUTPUT

... ...

I/O... Type...

五 设计方法

5.1 取指（IF）

图3 取指部分数据通路

取指令阶段的主要模块及其功能如下：

Ø nextPC_Mux：多路选择器，选择下条指令的地址。图示为4输入，即下地址可

能的来源有4个，分别是：PC+4，分支地址，跳转地址，跳转寄存器地址。加

入异常处理逻辑后，输入将扩展为5个，第5个下地址为一个常量，指向异常处

理程序。

Ø PCIncrease：加法器，计算PC+4。虽然输入输出都是32位，但实际上这32位的

最低两位恒定为0，所以用一个30位加法器实现。

Ø InstructionCache：指令缓存。图示只是缓存的存储体，预计实现4路组相联，

为此要引入存储体的标记（tag）部分。

需要特别指出的是，没有设置PC寄存器，而是从可能的下地址中选择一个地址（选

择信号由冒险检测单元给出），直接送到指令Cache。这样可以消除跳转指令的分支延

迟。但jump register的分支延迟依然不能避免，另外还有兼容性方面的考虑，所以实

际实现中没有取消跳转指令的延迟槽。不过这种做法使分支指令的开销减少一个周期。

data3x[31..0]
data2x[31..0]
data1x[31..0]
data0x[31..0]

sel[1..0]

result[31..0]

nextPC_Mux

inst

PC[31..0]
PCplus4[31..0]

PCIncrease

inst22

PC[31..0]

Stall Flush

Instruction[31..0]

Clock

PCOut[31..0]

InstructionOut[31..0]

Rs[4..0]

Rt[4..0]

Rd[4..0]

IF_ID

inst55

Reset

PC[31..0]

WriteAddress[31..0]

WriteData[31..0]

WriteEnable

Clock

Instruction[31..0]

test1[31..0] test2[31..0] test3[31..0] test4[31..0] test5[31..0]

InstructionCache

inst4

5.2 译码（ID）

data1x[31..0]
data0x[31..0]

sel

result[31..0]

ID_Forward

inst5

data1x[31..0]
data0x[31..0]

sel

result[31..0]

ID_Forward

inst6

data3x[31..0]
data2x[31..0]
data1x[31..0]
data0x[31..0]

sel[1..0]

result[31..0]

ExI_Mux

inst41

PC[31..0]

S
ta
ll

F
lu
sh

I nstruction[31..0]

C
lo
ck

PCOut[31..0]

Instruct ionOut[31..0]

Rs[4..0]

Rt [4..0]

Rd[4..0]

IF_ID

inst55

ReadAddress1[4..0]

ReadAddress2[4..0]

WriteAddress[4..0]

WriteData[31..0]

A
cc
es
sT

yp
e[
3.
.0
]

C
lo
ck

R
es
et

W
rit
eE

na
bl
e

s0
[3
1.
.0
]

s1
[3
1.
.0
]

s2
[3
1.
.0
]

s3
[3
1.
.0
]

s4
[3
1.
.0
]

ReadData2[31..0]

ReadData1[31..0]

RegStack

inst56

Instruction[31..0]
ZeroExI [31..0]

SignExI[31..0]

SignExAndShif t[31..0]

ForLUI[31..0]

getExI

inst60

Instrution[31..0]

ExResultSrc[2..0]

te
st
2

te
st
3

te
st
4

te
st
5

te
st
6

te
st
7

te
st
8

Jump[1..0]

LLBitWrite

ExceptionTy pe[3..0]

MemRead

Branch

Trap

Condition[2..0]

RegWrite

MemWrite

MemOp[2..0]

MainHiWrite

MainLoWrite

D ivOp[1..0]

MulOp[2..0]

ALUOp[3..0]

ALUSrcA

ALUSrcB

MemDataSrc[1..0]

Shif tAmountSel

Shif tOp[1..0]

RdSelect

MainLoRead

MainHiRead

ExtendISel[1..0]

SCFlag

Decode

inst2

图4 译码阶段数据通路

译码阶段的主要模块及其功能如下：

Ø IF_ID：取指/译码流水段寄存器，在流水线上传递必要数据和控制信号。

Ø RegStack：32*32寄存器堆。

Ø Decode：控制译码器，根据指令产生控制信号。

Ø getExI：产生扩展的立即数，包括0扩展，符号扩展，符号扩展左移两位，扩

展低16位（为了实现lui指令）。

Ø ExI_Mux：多路选择器，选择正确扩展的立即数。

Ø ID_Forward：多路选择器，用于数据转发。

5.3 执行（EXE）

在EX阶段，逻辑部件最多，耗时最长，是系统的关键路径。算术逻辑单元（ALU:

arithmetic logic unit）处于EX阶段，是MIPS处理器的核心部件。ALU是CPU中完成主

要的算术运算和逻辑运算的环节，它的设计直接影响到CPU的频率。本设计将给出成基

本定点运算的ALU，桶形移位器、基于基4Booth编码和Wallace树压缩的乘加器以及基于

SRT的除法器。

基本ALU根据控制译码器传送过来的四位ALUOp控制信号执行相应运算，输入为由二

路选择器控制的两个32位操作数；输出为32位的结果，以及进/借位标志位C、小于标志

位Less 、零标志位Z和溢出标志位V。主要执行的运算包括与、或、异或、或非四种逻

辑运算和加法、减法（有符号），前导一、前导零、小于置一等整数运算。

VCC Operand_B[3 1.. 0] INPUT

VCC
Operand_A[3 1.. 0] INPUT

C OUT PUT

Les s OUT PUT

Z OUT PUT

V OUT PUT

Res ult [31. .0] OUT PUT

a [31 .. 0]

b [31 .. 0]

res ult[31. .0]

and 0

inst 1

a [31 .. 0]

b [31 .. 0]

res ult[31. .0]

or0

inst 2

a [31 .. 0]

b [31 .. 0]

re sult[31 .. 0]

xor0

inst 3

a [31 .. 0]

b [31 .. 0]

re sult[31 .. 0]

xor0

inst 4
dat a

e xt endDa ta[31. . 0]

en ten d1To32

ins t1 0

dat a[31. .0]
num be rOf LeadZero [3 1.. 0]

lead Zero

in st1 2

a[3 1. .0]
resu lt [3 1. .0]

no t0

ins t13

data6x[31..0]
data5x[31..0]
data4x[31..0]
data3x[31..0]
data2x[31..0]
data1x[31..0]
data0x[31..0]

sel[2..0]

res ult[31..0]

result_Mux

ins t14

da ta [31 .. 0]
S

Z

get Fla g

inst 16

XO R

inst 17

data1
data0

sel

res ult

less_Mux

inst 19

0
32

constantZero

inst 22

1
32

constantOne

inst 24
data1x[31..0]

data0x[31..0]
sel

result[31..0]

slt_Mux

inst 26

XOR

ins t18

dat a
e xt endDa ta[31. . 0]

en ten d1To32

ins t9

c in

in1 [31 .. 0]

in2 [31 .. 0]

ou t[31. .0]

c

v

add

inst

a [31 .. 0]

b [31 .. 0]

re sult [31 .. 0]

xor0

inst 6

VCC
ALUOp[3. .0] INPUT

ALUOp[3. .0]
ad d_sub

result Select [2 .. 0]

s lt _slt u

ALUCon trol

ins t30

图5 基本ALU数据通路

如图5所示，ALUOp0控制加减法以及前导零（ 一） ，ALUOp1控制有无符号操作， 这

样尽管用了四位ALUOp来控制ALU运算，但是可以减少额外译码。ALU控制器对四位ALUOp

进行二级译码（得到三位ALUCtr，控制多路选择器的输出结果。

Ø 计算前导零（一），即统计寄存器中数据起始为0（1）的个数， 如果寄存器

中都是0（1） ， 则结果为32。由表1可知计算前导零时，ALUOp0为0； 计算

前导一时，ALUOp0为1。因此，如图1所示，首先将ALUOp0扩展为32位，再将其

与操作数异或，这样就将两种运算整合到一起。然后通过32：5编码器，直接

计算前导零的个数，将得到的计数高27位补零，就得到最终的结果。

Ø 算术运算的核心部件为超前进位加法器，其主体思想是：以尽可能短的延迟时

间算出各位的进位信号，然后再按位异或。减法运算由ALUOp0控制，当ALUOp0

为1时，将其扩展为32位与减数按位异或以取反，而ALUOp0作为进位信号传入

加法器，这样，减数就完成了取反加一操作，然后进行加法操作就得到差。对

于算术运算标志位，先对加法器得到的计算算结果进行32位按位或，然后取反

得到零标志位；加法器的溢出标志位由加法器直接计算；进/借位标志位通过

将加法器计算得的进位标志位与ALUOp0异或得到。

Ø 逻辑运算中，与、或和异或运算，直接通过与、或和异或陈列完成；或非运算

将从或阵列得到结果再通过非阵列来完成。

Ø 进行小于置一运算时，首先将两个操作数相减，然后再判定大小。有符号数和

无符号数的判定采用不同逻辑：两个有符号数比较，Less（标志位）为V异或S

的结果；两个无符号数比较，Less即为C。Less再通过二路选择器控制输出结

果。

常用的移位器是用D触发器实现的，每次移一位，设定一个计数器，当计数值到零

时停止移位。这种方法很是低效，速度很慢。实际上，移位过程可以看作是一个选择数

据的过程，例如，左移一位的移与不移，可以看作是选择左边一位的数据和选择当前该

位的数据。移2位、移4位、移8位和移16位也是同样的道理。在MIPS指令中，对32位的

操作数进行移位运算只有移动1-31位有意义，移动零位即为该数据本身，而移动位数超

过31位则是零。因此，我们可以用一个五位的控制信号（从高到低各位分别代表移动16

位，移动8位，移动4位，移动2位，移动1位）来实现移动1-32位的操作。鉴于篇幅限制，

图6只给出了8位桶形移位器的逻辑示意图。其中D0-D7为操作数，S0-S2为控制信号， Q0-

Q7为移位操作后得到的结果。其中1表示左移，0表示右移；1表示算术，0表示逻辑。

图6 桶形移位器逻辑示意图

执行阶段的主要模块及其功能如下：

Ø getJumpAddress：用几个字段拼接出跳转地址。

Ø BranchAddress_Adder：30位加法器，计算分支地址。

w
rit
eE
na
bl
e

cl
oc
k

dataIn[31..0] dataOut[31..0] Hi

inst20

cl
oc
k

w
rit
eE
na
bl
e

dataIn[31..0] dataOut[31..0] Lo

inst21

data2x[31..0]
data1x[31..0]
data0x[31..0]

sel[1..0]

result[31..0]

DataSrc

inst26

data2x[31..0]
data1x[31..0]
data0x[31..0]

sel[1..0]

result[31..0]

DataSrc

inst27

f romMul 0
f romDiv 1
f romMain 2

Parameter Value

MainLoWrite

MulLoWrite

Div LoWrite

LoWrite

LoDataSrc[1..0]

getLoDataSrc

inst31

f romMul 0
f romDiv 1
f romMain 2

Parameter Value

MainHiWrite

MulHiWrite

DivHiWrite

HiWrite

HiDataSrc[1..0]

getHiDataSrc

inst32

图 7 执行阶段模块图

Ø Lo/Hi：这两个是体系结构可见的寄存器，并为其引入了读写逻辑。由

getHiDataSrc/getLoDataSrc决定写入Hi/Lo的数据的来源。可能的来源有：乘

加器，除法器，主流水线（mthi/mtlo指令）。

Ø Div：SRT除法器。尚未加入到顶层模块中。

Ø Mul：乘加器。基4布斯乘法，wallace树压缩，选择进位加法。3级流水，连续

的乘加操作间不用阻塞，吞吐量为一个周期一个乘加操作。为了实现这点，在

乘加器的第2级末尾，已经将部分积压缩到2个。在第3级开始时，其前一条乘

加指令的结果已经写入Lo和Hi，将该结果转发到第3级的开始位置，外带流水

线上的两个部分积，共3个加数，作一次3-2压缩，再进行32位加法，最后是一

个2选1多路选择器实现选择进位。

为了实现乘减操作，在布斯编码之前，根据乘减标志将乘数取反。对乘数最低2位

作布斯编码时，要在最低位补1个0，从而凑齐3位作基4布斯编码。我们将这个0换成乘

减标志，相当于实现对取反的乘数加1，自此即得乘数的补码，从而得到积的补码，或

相反数。

为了支持有符号乘法和无符号乘法，首先对乘数高位扩展2位，共34位，经布斯编

码，有17个部分积，外带布斯编码时取补导致的进位，共18个部分积。

缺憾在于wallace树在布局布线上并不友好，不过我们现在是做基于fpga的验证，

所以暂时不考虑布局布线的问题。

附乘加器的顶层设计图如下：

VC
C

b[
31
..0
]

IN
P
U
T

VC
C

a[
31
..0
]

IN
P
U
T

VC
C

cl
oc
k

IN
P
U
T

V
C
C

H
iIn
[3
1.
.0
]

IN
P
U
T

V
C
C

Lo
In
[3
1.
.0
]

IN
P
U
T

VC
C

M
ul
O
p[
2.
.0
]

IN
P
U
T

G
N
D

re
se
t

IN
P
U
T

Lo
O
ut
[3
1.
.0
]

O
U
T
P
U
T

H
iO
ut
[3
1.
.0
]

O
U
T
P
U
T

M
ul
32
F
la
g

O
U
T
P
U
T

M
ul
32
R
ea
dy

O
U
T
P
U
T

Lo
H
iW
rit
e

O
U
T
P
U
T

M
ul
R
ea
dy

O
U
T
P
U
T

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
7

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
9

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
10

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
11

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
12

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
13

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
14

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
15

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
19

DW 64
Parameter Value

A[
D
W
­1
..0
]

B[
D
W
­1
..0
]

C
i[D
W
­1
..0
]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..
0]

C
S
A_
L

in
st
20

aI
n[
31
..
0]

b[
31
..0
]

si
gn

C
[6
3.
.0
]

I0
[6
3.
.0
]

I1
[6
3.
.0
]

I2
[6
3.
.0
]

I3
[6
3.
.0
]

I4
[6
3.
.0
]

I5
[6
3.
.0
]

I6
[6
3.
.0
]

I7
[6
3.
.0
]

I8
[6
3.
.0
]

I9
[6
3.
.0
]

I1
0[
63
..0
]

I1
1[
63
..0
]

I1
2[
63
..0
]

I1
3[
63
..0
]

I1
4[
63
..0
]

I1
5[
63
..0
]

I1
6[
63
..0
]

pr
e

in
st

DW 64
Parameter Value

I0
[D
W
­1
..0
]

I1
[D
W
­1
..0
]

I2
[D
W
­1
..0
]

I3
[D
W
­1
..0
]

D
[6
3.
.0
]

C
[6
3.
.0
]

_4
2C
_L

in
st
16
 DW 64

Parameter Value

I0
[D
W
­1
..0
]

I1
[D
W
­1
..0
]

I2
[D
W
­1
..0
]

I3
[D
W
­1
..0
]

D
[6
3.
.0
]

C
[6
3.
.0
]

_4
2C
_L

in
st
17

DW 64
Parameter Value

I0
[D
W
­1
..
0]

I1
[D
W
­1
..
0]

I2
[D
W
­1
..
0]

I3
[D
W
­1
..
0]

D
[6
3.
.0
]

C
[6
3.
.0
]

_4
2C
_L

in
st
21

DW 64
Parameter Value

A
[D
W
­1
..0
]

B
[D
W
­1
..0
]

C
i[D
W
­1
..
0]

D
[D
W
­1
..0
]

C
o[
D
W
­1
..0
]

C
SA
_L

in
st
6

a[
63
..
0]

b[
63
..
0]

aH
i[3
1.
.0
]

aL
o[
31
..0
]

bH
i[3
1.
.0
]

bL
o[
31
..0
]

M
ul
_g
et
W
ire

in
st
3

A

B

A
+B
 da
ta
a[
31
..0
]

da
ta
b[
31
..0
] ci
n

re
su
lt[
31
..0
] M
ul
_a
dd
2

in
st
5

1

co
ns
ta
nt
1

in
st
18

A

B

A
+B
 da
ta
a[
31
..0
]

da
ta
b[
31
..0
] ci
n

re
su
lt[
31
..0
] M
ul
_a
dd
2

in
st
22

0

M
ul
_c
on
st
an
t0

in
st
23

da
ta
1x
[3
1.
.0
]

da
ta
0x
[3
1.
.0
]

se
l

re
su
lt[
31
..0
]

M
ul
_M
ux

in
st
24

H
iIn
[3
1.
.0
]

Lo
In
[3
1.
.0
]

H
iL
oO
ut
[6
3.
.0
]

co
m
bi
nW
ire

in
st
26

A

B

A
+B
 da
ta
a[
31
..0
]

da
ta
b[
31
..0
] ci
n

re
su
lt[
31
..0
]

co
ut

M
ul
_a
dd
1

in
st
27

m
Ad
dS
ub

cO
pe
ra
nd
[6
3.
.0
]

cO
pe
ra
nd
O
ut
[6
3.
.0
]

M
ul
_a
dd
S
ub
C
on
fig

in
st
29

da
ta
In

da
ta
O
ut
[6
3.
.0
]

M
ul
_w
id
en
To
64
Bi
t

in
st
34

64

64

64

M
ul
_a
nd
Fo
rM
ad
d

in
st
35

M
ul
O
p[
2.
.0
]

Lo
H
iW
rit
e

M
ul
_a
dd
Su
b

M
ul
_m
ad
d

M
ul
_s
ig
n

M
ul
32
F
la
g

M
ul
_c
on
tro
l

in
st
37

c lock

f lush

s1
[6
3.
.0
]

s2
[6
3.
.0
]

s3
[6
3.
.0
]

s4
[6
3.
.0
]

s5
[6
3.
.0
]

s6
[6
3.
.0
]

s7
[6
3.
.0
]

s8
[6
3.
.0
]

M
ul
_m
ad
d

M
ul
_a
dd
S
ub

M
ul
_L
oH
iW
rit
e

M
ul
32
F
la
g

s1
_O
ut
[6
3.
.0
]

s2
_O
ut
[6
3.
.0
]

s3
_O
ut
[6
3.
.0
]

s4
_O
ut
[6
3.
.0
]

s5
_O
ut
[6
3.
.0
]

s6
_O
ut
[6
3.
.0
]

s7
_O
ut
[6
3.
.0
]

s8
_O
ut
[6
3.
.0
]

M
ul
_m
ad
dO
ut

M
ul
_a
dd
S
ub
O
ut

M
ul
_L
oH
iW
rit
eO
ut

M
ul
32
Fl
ag
O
ut

m
ul
_p
ip
e_
1

in
st
44

clock

f lush

s1
[6
3.
.0
]

s2
[6
3.
.0
]

M
ul
_m
ad
d

M
ul
_a
dd
Su
b

M
ul
_L
oH
iW
rit
e

M
ul
32
Fl
ag

s1
_O
ut
[6
3.
.0
]

s2
_O
ut
[6
3.
.0
]

M
ul
_m
ad
dO
ut

M
ul
_a
dd
Su
bO
ut

M
ul
_L
oH
iW
rit
eO
ut

M
ul
32
F
la
gO
ut

m
ul
_p
ip
e_
2

in
st
46

lp
m
_o
r0

in
st
51

图 8 乘加器逻辑设计图

Ø rt_rd_Mux：选择回写的目标寄存器。选项包括rt和rd。

Ø fordward_Mux：多路选择器，用于转发，解决数据相关。

Ø shiftAmount_Mux：选择移位量来源。选项包括：指令中的shmt字段和[rs]的

低5位。

Ø AluSrc_Mux：选择ALU操作数的来源。

Ø DataToMem_Mux：选择写到存储器的数据的来源。

Ø WBDataSrc_Mux：选择各执行部件的运算结果。

5.4 存储（MEM）

data1x[31..0]
data0x[31..0]

sel

result[31..0]

forSC_Mux

inst45

MemAddress[31..0] F irstBy te[1..0] getF irstBy te

inst51

LLBit
LLBitOut[31..0]

extendLLBit

inst24

Z

Le
ss

Branch

Trap

Condition[2..0]

RegWrite

MemWrite

LL
B
it

BranchOut

TrapOut

RegWriteOut

MemWriteOut

Condit ionCheck

inst3

MemOp[2..0]

F irstBy te[1..0]

WriteBackTy pe[3..0]

GetWriteBackTy pe

inst48

Address[31..0] M
em

W
rit
e

M
em

O
p[
2.
.0
]

C
lo
ck

R
es
et
 DataIn[31..0]

DataOut[31..0]
DataCache

inst54

Z

Less

V

S
ta
ll

F
lu
sh

LLBitWrite

ExceptionType[3..0]

MemRead

Branch

Trap

Condition[2..0]

RegWrite

MemWrite

MemOp[2..0]

BranchAddress[31..0]

DataToMem[31..0]

Rd[4..0]

C
lo
ck

ExResult[31..0]

SCFlag

ZOut

LessOut

VOut

LLBitWriteOut

ExceptionTy peOut[31..0]

MemReadOut

BranchOut

TrapOut

ConditionOut[2..0]

RegWriteOut

MemWriteOut

MemOpOut[2..0]

BranchAddressOut[31..0]

DataToMemOut[31..0]

RdOut[4..0]

ExResultOut[31..0]

SCFlagOut

EX_MEM

inst34

图 9 存储阶段数据通路

访存阶段的主要模块及其功能如下：

Ø EX_MEM：执行/访存流水段寄存器。

Ø ConditionCheck：条件检测单元。检测指令要求的条件是否得到满足。比如对

于beq，检测运算结果的零标志（Z）是否有效。

Ø GetWriteBackType：取得回写类型。针对lwl和lwr指令，根据访存类型和访存

地址最低2位决定回写通用寄存器的哪几个字节。

Ø forSC_Mux：针对sc指令的一个多路选择器。如果是sc指令，则回写扩展后的

LLBit，否则回写执行阶段得到的结果。

Ø DataCache：数据缓存。同指令缓存，图示只是缓存的存储体，预计实现4路组

相联，为此要引入存储体的标记（tag）部分。

5.5 写回（WB）

写回阶段的主要模块及其功能如下：

Ø MEM_WB：访存/写回流水段寄存器。

Ø WriteBackData_Mux：选择回写的数据来源。选项包括：从内存中读取的数据

和执行阶段的执行结果。

5.6 转发

模块名为FordwardUnit，转发单元，用于解决流水线上的数据相关。可能的数

据相关包括：第3周期（执行）和第4周期（访存），第3周期（执行）和第5周期（写回），

第2周期（译码）和第5周期（写回）。第3周期不可能要求转发第4周期的访存结果，这

种潜在的数据相关由冒险检测单元事先解决，所以根本不会出现。

5.7 冒险检测

可能的冒险有（按优先级从高到低排序）：

Ø 异常和中断：由0号协处理器发出通知。另外0号协处理器还提供异常发生的位

置信息，从而让冒险检测单元发出适当的flush信号，清除流水线中位于异常

指令后的所有其他指令。

Ø 分支：如果分支发生，清除分支后的第二条指令，控制流转向分支地址。

Ø 跳转：控制流转向跳转地址。

Ø Load-use：加载-使用冒险，处理方案是在这两条指令间插入一条空指令。

Ø 乘法或除法指令：如果处于执行阶段的指令是mul，即要将32位结果回写到寄

存器的乘法指令，则阻塞流水线，知道该指令执行完毕。如果是其他类型的乘

法指令或者除法指令，结果只是存入Hi和Lo，不会写到通用寄存器，则不用阻

塞流水线，除非遇到mfhi或者mflo指令。如果某条乘法指令或除法指令尚未执

行完毕，又遇到一条乘法或除法指令，则将尚未执行完毕的指令清除，只提交

新的指令结果到Hi和Lo。相邻的乘法或除法指令间，如果要得到前一条指令的

结果，应该在两指令间插入mfhi和mflo，这一点由编译器和汇编程序员保证。

六 设计特点

6.1 指令的兼容性和完备性

本设计完成的指令集与 The MIPS32® Instruction Set Revision 2.62 兼容，能完

成超过 80条定点运算指令。

6.2 高效的运算部件设计

本处理器的运算部件经过精心设计，采用高效的而算法。加法运算采用超前进位加

法器，移位采用桶形移位器，乘法采用基于基 4Booth 编码和 Wallace 树压缩的乘加器，

除法采用基于 SRT 的除法器。

6.3 先进的体系结构

在本处理器上妥善地处理了流水线中结构、数据和控制相关性，实现了异常和中断

处理机制，高级缓存，虚拟内存管理，兼容avalon总线。同时本设计拟实现寄存器重命

名机制，用于支持乱序（多）发射实现指令级并行；本设计还考虑分支预测。

6.4 FPGA 验证

本设计在 quartus9.0 下，采用硬件描述语言 Verilog HDL 实现电路的逻辑设计，

在仿真都正确的情况下，使用 Altera 公司的 DE2-70 开发板进行了验证。并拟在 FPGA

上实现简单的应用。

七 总结

一些体会：

我们采用自顶向下开发模式，不断分解功能模块，然后逐个构建各个基本的功能模

块，由代码生成 bsf 文件；对于高层的模块，为其建立 bdf 文件，在其中用低层模块的

bsf 文件拼接得到高层模块，而非书写代码实现模块的实例化调用。这种拼接的方法比

书写代码更为直观，适用于复杂模块的实现。当模块足够简单时，则用代码进行行为描

述更为高效。

但使用这种方法进行开发时， 最让人头疼的是模块接口的变动。 因为在 quartus 中，

对于那些为模块生成的 bsf 文件，只能删除对外针脚（接口），不可以添加。那么如果

要给某个模块添加接口，就要重新为其生成 bsf 文件。有时出于图纸布局的需要，会改

变 bsf 文件的形状以及针脚的位置，一旦重新生成bsf 文件，这项工作就要重做。所以

特此建议，在 quartus 中实现为 bsf 文件添加针脚的功能，从而可以更自由地编辑 bsf

文件。

附录：

Trap

Op[31:26] 十进制 Func[5:0] 十进制 指令 Trap

默认 默认 0

000000 0 110000 48 tge 1

110001 49 tgeu 1

110010 50 tlt 1

110011 51 tltu 1

110100 52 teq 1

110110 54 tne 1

Trap，自陷信号，CP0 检测到此信号有效，即一个自陷异常，将通知冒险检测单元

清除流水线上的其余指令，转入异常处理例程。CP0 可能还有其他附加行为，如将 CP0

中相应标志寄存器置位等，尚未研究，延后处理。

Condition[2:0]

Op[31:26]
十进

制
Func[5:0]

十进

制
指令

含义
Condition[2:0]

十进制

默认 默认 000 000 0

000000 0 001010 10 movz 等于 001 1

001011 11 movn 不等于 010 2

110000
48

tge
大于等

于
100

4

110001
49

tgeu
大于等

于
100

4

110010 50 tlt 小于 101 5

110011 51 tltu 小于 101 5

110100 52 teq 等于 001 1

110110 54 tne 不等于 010 2

000100 4 xxxxxx beq 等于 001 1

000101 5 bne 不等于 010 2

000110
6

blez
小于等

于
110

6

000111 7 bgtz 大于 011 3

111000 56 sc

CP0 中

LLBit

为 1

111 7

表中列出的指令，其行为受条件约束。Condition 字段指出了条件类型。

对于自陷和分支指令，自陷或分支发生与否，与 ALU 的运算结果有关。这里的结果

指 ALU 运算结果的标志。

为自陷和分支特设了自陷标志 Trap 和分支标志 Branch。这两个信号以及条件字段

Condition 被送到 ConditionCheck 单元。当 ConditionCheck 单元发现 Trap 信号有效，

就检测 Condition 字段，看其自陷条件是什么，并检查 ALU 运算结果的标志，看自陷条

件是否满足。满足则输出一个有效的 Trap 信号，送到 CP0。否则输出一个无效的 Trap

信号（置 0）。

Branch 标志的逻辑和 Trap 标志相同。

movz 和 movn 是条件移动指令，在条件（[rt]的值是否为 0）满足时将数据从源寄

存器移动到目标寄存器。Opensparc 的文档中对此的说明是，这减少了程序中 branch

指令的数目。这句话的含义还没有完全理解。我们的实现中，没有像 Branch 和 Trap 指

令那样， 特设 mov 标志， 而是将其集成在 Condition 字段的编码中。 这是因为 Condition

字段至少 3 位，编码空间为 8，实际只用掉 5 个编码（至少要 5 个，所以 Condition 字

段至少 3位），余下三个编码中，两个用来表示 movz 和 movn。当 ConditionCheck 单元

在 Condition 字段发现此种条件，就去检测零标志，以决定 RegWrite（寄存器写使能）

是否有效。对于其他指令，ConditionCheck 单元不改变 RegWrite 的值。

Condition 字段的最后一个编码，用于表示 sc指令的条件，即 LLbit 是否有效。当

ConditionCheck 单元在 Condition 字段发现此种条件， 就检测 CP0 中的 LLBit。 若 LLBit

有效，则 ConditionCheck 单元输出一个有效的 MemWrite 信号，允许将数据写入数据

Cache。否则 ConditionCheck 单元将 MemWrite 信号置 0（无效）。当然对于其他指令，

ConditionCheck 模块不改变 MemWrite 的值。

Branch

Op[31:26] 十进制 Func[5:0] 十进制 指令 Branch

默认 默认 0

000100 4 xxxxxx beq 1

000101 5 bne 1

000110 6 blez 1

000111 7 bgtz 1

Branch， 分支指令标志， 用于标识当前指令为分支指令。 将经由 Condition Check 单

元确定分支条件是否满足， 然后送往冒险检测单元， 用于产生PCSrc。 详见Condition[2:0]

字段的说明。

LLBitWrite

Op[31:26] 十进制 Func[5:0] 十进制 指令 LLBitWrite

默认 默认 0

110000 48 xxxxxx ll 1

LLBitWrite ，为 ll 指令特设的标志。ll(Load Linked Word)的行为与 lw 类似。

只是 ll 指令要将 CP0 内的 LLBit 置 1。此信号作为 LLBit 的写使能，只对 ll 指令该信

号有效。

SCFlag 信号已经删除。

Op[31:26] 十进制 Func[5:0] 十进制 指令 SCFlag

默认 默认 0

111000 56 xxxxxx sc 1

sc(Store Condition)的行为：若 CP0 中的 LLBit 为 1，则写存储器且向寄存器堆回写

1；否则不写存储器且向寄存器堆回写 0。

注：

该字段可由 Condition 字段在 MEM 阶段生成。即 Condition 为 111 时，sc为 1，否则 sc

为 0。所以这个冗余信号在译码阶段可以省去。详见 Condition[2:0]

MemOp[2:0]

Op[31:26] 十进制 Func[5:0] 十进制 指令 MemOp[2:0] 十进制

默认 默认 000 0

100000 32 lb 011 3

100001 33 lh 001 1

100010 34 lwl 101 5

100011 35 lw 000 0

100100 36 lbu 100 4

100101 37 lhu 010 2

100110 38 lwr 110 6

101000 40 sb 011 3

101001 41 sh 001 1

101010 42 swl 101 5

101011 43 sw 000 0

101110 46 swr 110 6

110000 48 ll 000 0

111000 56 sc 000 0

MemOp，该信号指出访存的类型，它还与访存地址的低两位，共同指出回传给寄存

器堆的 4个字节中， 哪些字节要回写。 编码空间中各具体码值的意义， 见文档 MemOp.doc。

MemWrite（高电平有效）

Op[31:26] 十进制 Func[5:0] 十进制 指令 MemWrite

默认 默认 0

101000 40 sb 1

101001 41 sh 1

101010 42 swl 1

101011 43 sw 1

101110 46 swr 1

111000 56 sc 1

111001 57 swc1 1

111010 58 swc2 1

MemWrite，内存的写使能信号，仅对 store 指令有效。

RegWrite

Op[31:26] 十进制 Func[5:0] 十进制 指令 RegWrite

默认 默认 0

000000 0 000000 0 sll 1

0 000010 2 srl 1

0 000011 3 sra 1

0 000100 4 sllv 1

0 000110 6 srlv 1

0 000111 7 srav 1

001001 9 jalr 1

0 001010 10 movz 1

0 001011 11 movn 1

0 010000 16 mfhi 1

010010 18 mflo 1

100000 32 add 1

100001 33 addu 1

100010 34 sub 1

100011 35 subu 1

100100 36 and 1

100101 37 or 1

100110 38 xor 1

39 nor 1

42 slt 1

43 sltu 1

000011 3 jal 1

001000 8 xxxxxx addi 1

001001 9 addiu 1

001010 10 slti 1

001011 11 sltiu 1

001100 12 andi 1

001101 13 ori 1

001110 14 xori 1

001111 15 lui 1

011100 28 000010 2 mul 1

011100 28 100000 32 clz 1

011100 28 100001 33 clo 1

100000 32 lb 1

100001 33 lh 1

100010 34 lwl 1

100011 35 lw 1

100100 36 lbu 1

100101 37 lhu 1

100110 38 lwr 1

110000 48 ll 1

111000 56 sc 1

RegWrite，寄存器堆的写使能信号，也即回写信号。对于有数据回写的指令有效，

包括 R-Type，I-Type，mov，load 等指令有效。

MemRead

Op[31:26] 十进制 Func[5:0] 十进制 指令 MemRead

默认 默认 0

100000 32 xxxxxx lb 1

100001 33 xxxxxx lh 1

100010 34 xxxxxx lwl 1

100011 35 xxxxxx lw 1

100100 36 xxxxxx lbu 1

100101 37 xxxxxx lhu 1

100110 38 xxxxxx lwr 1

110000 48 xxxxxx ll 1

MemRead，内存读取标志。实际上内存（这里指数据 Cache）并不设读使能信号，该

信号主要用于回写数据的选择（回写的数据可能来自内存或者是执行阶段时得到的结

果），还用于告知 CP0,当前指令要读取内存，让 CP0 检测 Cache 是否命中，是否有地址

错误等。

Jump[1:0]

Op[31:26] 十进制 Func[5:0] 十进制 指令 说明 Jump[1:0]

默认 默认 不跳转 00

000000 0 001000 8 jr

跳转到Rs寄

存器中的地

址

10

0 001001 9 jalr

跳转到Rs寄

存器中的地

址

10

2 j

跳转到立即

数扩展后的

地址

01

3 jal

跳转到立即

数扩展后的

地址

01

Jump，为跳转指令特设的标志。冒险检测单元将会检测这个标志，以决定下条指令

的地址。跳转的目标可能是[rs]，也可能是指令中的 26 位立即数左移两位，拼上 PC+4

的高 4位得到的地址。故 jump 标志 1位不够，至少两位。

link 表示将返回地址（PC+8）写回寄存器！jal 的返回地址一定存入 31号寄存器，

但在指令中没有显示的 rd字段，因为指令的低 26位全部作为立即数，生成跳转地址。

没有 rd 字段意味着回写的目标寄存器有 3 种选择:rs,rt 和 31 号寄存器。也就是说，

RdSelect 字段应该设成 2位。

jalr 的返回地址存入指定的 rd或默认的 31号 （此时指令中的 rd字段被设为 31）。

jalr 指令格式:

jalr rs;（此时 rd默认为 31号）

或者：

jalr rd,rs;

MainHiWrite

Op[31:26] 十进制 Func[5:0] 十进制 指令 MainHiWrite

默认 默认 0

000000 0 010001 17 mthi 1

MainHiWrite，主流水线对寄存器 Hi的写请求信号。

getHiDataSrc 模块接收各单元的写请求，并决定写寄存器 Hi 时，写入的数据来自

哪里，包括主流水线（mthi 指令）、乘法单元和除法单元。

MainLoWrite

Op[31:26] 十进制 Func[5:0] 十进制 指令 MainLoWrite

默认 默认 0

000000 0 010011 19 mtlo 1

MainLoWrite，同 MainHiWrite。

HiRead

Op[31:26] 十进制 Func[5:0] 十进制 指令 HiRead

默认 默认 0

000000 0 010000 16 mfhi 1

HiRead，寄存器 Hi的读请求信号，只对于 mfhi 指令有效。冒险检测单元会监听该

信号。当冒险检测单元发现该信号有效时，将检查乘除法单元，判定当前是否有乘除法

（不包括只保留 32位结果的乘法指令 mul）在运行。有，则将流水线停顿，直到乘法或

除法指令运行完毕，即 Hi中的内容变得可用，确保 mfhi 指令取到的是乘除法单元最终

的运算结果。

LoRead

Op[31:26] 十进制 Func[5:0] 十进制 指令 LoRead

默认 默认 0

000000 0 010010 18 mflo 1

LoRead，同 HiRead。

DivOp[1:0]

Op[31:26] 十进制 Func[5:0] 十进制 指令 说明 DivOp[1:0]

默认 默认 不是除法 00

000000 0 011010 26 div 有符号除法 01

000000 0 011011 27 divu 无符号除法 10

DivOp，除法单元的操作吗。由于要区分操作数有无符号，以及当前指令是否除法，

故该信号至少 2位。

MulOp

Op[31:26] 十进制 Func[5:0] 十进制 指令 说明 MulOp[2:0]

默认 默认 不是乘法 000

000000 0 011000 24 mult 001

000000 0 011001 25 multu 010

011100 28 000000 0 madd 011

000001 1 maddu 100

000010 2 mul 101

000100 4 msub 110

000101 5 msubu 111

MulOp，乘法单元的操作码。乘法单元可能执行的操作有：乘法（有/无符号），乘

加（有/无符号），乘减（有/无符号），只保留 32 位结果且结果不写入 Lo 与 Hi 的特

殊乘法指令 mul。

MemDataSrc[1:0]

Op[31:26]
十进

制

MT[25:21]]
Func[5:0]

十进

制
指令

说明
MemDataSrc[1:0]

默认 默认 来自 Rt 00

111001
57

xxxxxx swc1
来自

FPU

01

58
swc2

来自

COP2

10

MemDataSrc，写入内存的数据可能的来源有：[rt]、CP0 和浮点单元。故设此选择

信号。

ExResultSrc[2:0]

Op[31:26]
十进

制
Func[5:0]

十进

制
指令

数据来

源
ExResultSrc[2:0]

十进

制

默认 默认 xxx

000000
0

000000
0

sll
shift

Unit

111 7

000010
2

srl
shift

Unit

111 7

000011
3

sra
shift

Unit

111 7

000100
4

sllv
shift

Unit

111 7

000110
6

srlv
shift

Unit

111 7

000111
7

srav
shift

Unit

111 7

001001 9 jalr PC+8 101 5

001010 10 movz Rs 100 4

001011 11 movn Rs 100 4

010000 16 mfhi Hi 010 2

010010 18 mflo Lo 011 3

100000 32 add ALU 110 6

100001 33 addu ALU

100010 34 sub ALU

100011 35 subu ALU

100100 36 and ALU

100101 37 or ALU

100110 38 xor ALU

100111 39 nor ALU

101010 42 slt ALU

101011 43 sltu ALU

000011 3 jal PC+8

001000 8 addi ALU

001001 9 addiu ALU

001010 10 slti ALU

001011 11 sltiu ALU

001100 12 andi ALU

001101 13 ori ALU

001110 14 xori ALU

001111 15 lui ALU

011100 28 100000 32 clz ALU

100001 33 clo ALU

100000 32 lb ALU

100001 33 lh ALU

100010 34 lwl ALU

100011 35 lw ALU

100100 36 lbu ALU

100101 37 lhu ALU

100110 38 lwr ALU

101000 40 sb ALU

101001 41 sh ALU

101010 42 swl ALU

101011 43 sw ALU

101110 46 swr ALU

48 ll ALU

49 lwc1 ALU

50 lwc2 ALU

56 sc ALU

57 swc1 ALU

58 swc2 ALU

mfc0 CP0 000 0

mfc1 浮点 001 1

ExResultSrc，执行阶段取得的结果可能的来源有：ALU，移位单元，链接地址 PC+8，

Rs（条件移动指令 mov），Hi，Lo，浮点单元，CP0，共 8个，故该信号 3位。

ALUSrcA

Op[31:26] 十进制 Func[5:0] 十进制 指令 说明 ALUSrcA

默认 默认 [rs] 0

001111 15 xxxxxx lui 常数 0 1

ALUSrcA ，ALU 的第一个操作数的选择信号。仅对于 lui（取立即数高半字）指令

该位置 1，选常数 0 作为 ALU 的第一个操作数。对于其他指令，该位置 0，选[rs]作为

ALU 的第一个操作数。

ALUSrcB

Op[31:26] 十进制 Func[5:0] 十进制 指令 来源 ALUSrcB

默认 默认 Rt 内容 0

001000 8 addi Immediate 1

001001 9 addiu 1

001010 10 slti 1

001011 11 sltiu 1

001100 12 andi 1

001101 13 ori 1

001110 14 xori 1

001111 15 lui 1

100000 32 lb 1

100001 33 lh 1

100010 34 lwl 1

100011 35 lw 1

100100 36 lbu 1

100101 37 lhu 1

100110 38 lwr 1

101000 40 sb 1

101001 41 sh 1

101010 42 swl 1

101011 43 sw 1

46 swr 1

48 ll 1

49 lwc1 1

50 lwc2 1

56 sc 1

57 swc1 1

58 swc2 1

ALUSrcB ，ALU 的第二个操作数的选择信号。可选项有：[rt]和扩展的立即数。默

认值为 0，选[rt]。对于 I-Type 指令和访存指令，该位置 1，选扩展的立即数。其中访

存指令要用扩展的立即数来计算访存地址。

ALUOp[3:0]

Op[31:26]
十进

制
Func[5:0]

十进

制
指令

说明 ALUOp[3:0] 十进制

默认 默认 xxxx

001010 10 movz 符号减 0001 1

001011 11 movn 符号减 0001 1

100000 32 add 加 0000 0

100001 33 addu 加 0000 0

100010 34 sub 符号减 0001 1

100011 35 subu 符号减 0001 1

100100 36 and 与 0100 4

100101 37 or 或 0110 6

100110 38 xor 异或 1000 8

100111 39 nor 或非 1001 9

101010 42 slt slt 0101 5

101011 43 sltu sltu 0111 7

48 tge 符号减 0001 1

49 tgeu sltu 0111 7

50 tlt 符号减 0001 1

51 tltu sltu 0111 7

52 teq 符号减 0001 1

54 tne 符号减 0001 1

000100 4 xxxxxx beq 符号减 0001 1

000101 5 bne 符号减 0001 1

000110 6 blez 符号减 0001 1

000111 7 bgtz 符号减 0001 1

001000 8 addi 加 0000 0

001001 9 addiu 加 0000 0

001010 10 slti slt 0101 5

001011 11 sltiu sltu 0111 7

001100 12 andi 与 0100 4

001101 13 ori 或 0110 6

001110 14 xori 异或 1000 8

001111 15 lui 加 0000 0

011100 28 100000 32 clz 前导 0 0010 2

011100 28 100001 33 clo 前导 1 0011 3

100000 32 xxxxxx lb 加 0000 0

100001 33 lh 加 0000 0

100010 34 lwl 加 0000 0

100011 35 lw 加 0000 0

100100 36 lbu 加 0000 0

100101 37 lhu 加 0000 0

100110 38 lwr 加 0000 0

101000 40 sb 加 0000 0

101001 41 sh 加 0000 0

101010 42 swl 加 0000 0

101011 43 sw 加 0000 0

101110 46 swr 加 0000 0

110000 48 ll 加 0000 0

110001 49 lwc1 加 0000 0

110010 50 lwc2 加 0000 0

111000 56 sc 加 0000 0

111001 57 swc1 加 0000 0

58 swc2 加 0000 0

ALUOp，ALU 的操作码，用于确定 ALU 执行何种运算。可选的 ALU 操作减表中倒数第

三列“说明”。特别指出的是，其中的 tgeu 和 tltu 两条 trap（自陷）指令，由于只关

心运算结果的标志，所以不在编码中设置“无符号减”的选项，而是复用 sltu（set on

less then unsigned），即可得到正确的标志。

RdSelect[1:0]

Op[31:26] 十进制 Func[5:0] 十进制 指令 说明 RdSelect[1:0]

默认 默认 默认选 Rd 00

000011 3 jal 选常量 31 10

001000 8 addi 选 Rt 01

001001 9 addiu 01

001010 10 slti 01

001011 11 sltiu 01

001100 12 andi 01

001101 13 ori 01

001110 14 xori 01

001111 15 lui 01

100000 32 lb 01

100001 33 lh 01

100010 34 lwl 01

100011 35 lw 01

100100 36 lbu 01

100101 37 lhu 01

100110 38 lwr 01

110000 48 ll 01

56 sc 01

RdSelect，回写的目标寄存器的选择信号。可选的回写目标有：rd（默认值），rt

（针对 I-Type 和访存指令），以及 31号寄存器（针对 jal 指令，因为指令中没有显示

指出回写目标，而是采用默认的 31号寄存器）。

ShiftAmountSel

Op[31:26]
十进制

Func[5:0]
十进制

指令
移位量选

择
ShiftAmountSel

默认 默认 任意 x

000000 0 000000 0 sll shamt 0

000010 2 srl shamt 0

000011 3 sra shamt 0

000100 4 sllv Rs 低 5位 1

000110 6 srlv Rs 低 5位 1

000111 7 srav Rs 低 5位 1

ShiftAmountSel，移位量的来源选择。针对移位指令。可选的移位量来源有：指令

的 shamt 字段，或者 rs的低 5位。

ShiftOp[1:0]

Op[31:26] 十进制 Func[5:0] 十进制 指令 类型 ShiftOp[1:0]

默认 默认 任意 xx

000000 0 000000 0 sll 逻辑左移

000010 2 srl 逻辑右移

000011 3 sra 算术右移

000100 4 sllv 逻辑左移

000110 6 srlv 逻辑右移

000111 7 srav 算术右移

ShiftOp，移位单元的操作码。可选的移位操作见表中倒数第 2列“类型”。

ExtendI[1:0]

Op[31:26] 十进制 Func[5:0] 十进制 指令 说明 ExtendI[1:0]

默认 默认 符号扩展 00

001111 15 xxxxxx lui
低 16 位添

16 个 0
11

001100 12 andi 0 扩展 01

001101 13 ori 0 扩展 01

001110 14 xori 0 扩展 01

000100 4 beq
符号扩展左

移两位
10

000101 5 bne
符号扩展左

移两位
10

000110 6 blez
符号扩展左

移两位
10

000111 7 bgtz
符号扩展左

移两位
10

ExtendI，立即数的扩展方式选择。默认选符号扩展，这对于 I-Type 和访存指令，

移位指令（用到指令低 16 位中的 shamt 移位量字段）等都是正确的选择，故这些指令

不用在表中列出。零扩展针对逻辑指令，符号扩展左移两位针对 Branch 指令（用于计

算分支地址），低 16位添 16个 0这种扩展方式针对 lui（取立即数高半字）指令。

