FHNE MHRKERETERE

(R S

6.1 [5| <§6.1> If the time for an ALU operation can be shortened by 25% (com-
pared to the description in Figure 6.2 on page 373);
a. Will it affect the speedup obtained from pipelining? If yes, by how much?
Otherwise, why?
b. What if the ALU operation now takes 25% more time?

SEEE:
P.373F ALU#AERT[H] A200ps .

Program
T e 200 400 600 800 1000 1200 1400 -
order Time I | I I I I | -
(in instructions)

w $1,100($0) "G |Reg| AU | JEE IReg

- - :
lw $2, 200($0) 200 ps | Sracton Reg| ALU | 028 |Reg
- :
lw $3, 300($0) 200 ps | "ien | |Rea| AU | oo |Res
T i

200 ps 200 ps 200ps 200 ps 200 ps

a. ALUBRAER A1 4550 25% AN RE IR A K 2238 3 .

IR A 9 7K £ P03 P e 4 RN B R AR T e, T E A8 ki 81 FE 3 .
b. W RALUBMER] ZEK:25%, 4, ALURFEIRAE A250ps, iXFE, ALUEAERZS B0
B, (FSURKERFIATEhE Bk 250ps, HAAZEEEK (250-200)/250=20%

6.2 [10] <§6.1> A computer architect needs to design the pipeline of a new micro-
processor. She has an example workload program core with 10° instructions. Each
instruction takes 100 ps to finish.

a. How long does it take to execute this program core on a nonpipelined proces-
sor?

b. The current state-of-the-art microprocessor has about 20 pipeline stages.
Assume it is perfectly pipelined. How much speedup will it achieve compared
to the nonpipelined processor?

c. Real pipelining isn’t perfect, since implementing pipelining introduces some
overhead per pipeline stage. Will this overhead affect instruction latency,
instruction throughput, or both?

SEER:

a. —MEFZOERILI094KIES, FATES1100pssEml, NAEIRMKEA IS EHATH
I [E] 4 : 100 x108=100us.

b. FE—20HAKLR AT LT, BB T, SBERN: 100/20=5ps, AT
L, FEFPHATHT R M5 x108=5us. R T 100/5=201%

C. VKEIHFARERN, FKSEB B MIEEST=EBIMNITTE .
— 77T, XIS — &S RPAT R EER, BIRW Instruction latency
H—J7H, XFIFEEIA T EMNRKBRRHATE E, BN Instruction throughput

6.3 [5] <§6.1> Using a drawing similar to Figure 6.5 on page 377, show the for-
warding paths needed to execute the following four instructions:

add $3, $4, %6
sub $5, $3, $2
Tw %7, 100(%$5)
add $8, $/7, %2

Z2HEE: AEIRAWEREEK, HP— 1 Eload-useiii B, TEFHE — 4

Program
execution ~ ;
order Time I I I

(in instructions) o L
add $3, $4. $6 IF —O 1D %MEM {wB!
| i

— MEM EVB!
I

sub %5, $3, $2

lw $7. 100($5) IF —D%_ID 3 MEM = E’B_E
':1"|_||'||.'|-||\'I -_ J (.-|'|II|'||_'|||"-"_ } -.'-|'|| I||||_I -|'|I||'||'|||"."_-_: f]Illllli

| add $8, $7, $2 P :Bimm b

6.4 [10] <§6.1> Identify all of the data dependencies in the following code. Which
dependencies are data hazards that will be resolved via forwarding? Which depen-
dencies are data hazards that will cause a stall?

add $3, $4, §°2
sub $5, $3, §1
Tw %6, 200(%3)
add $7, $3, 36

SEEZE: AUANRAWEHIE B K

(1) HE—4kaddfg4S 58 —4ksubigS 2 IH]

(2) BF—4%addigLFIE =4&IwigL 22

(3) HF—%addigLFEEI&addg4 2 4]

(4) FE=4&IwiELFIE I sadd$g4 2 I

Hep, (D (2) 1 (3) BXRTHABRSIWEIEE R, 7 LUET" # k" ok
(4) BRRTHERSOHBIEER, Rload-usefIEEK, MEEET# K

fRu, KakHE—IKPHEZE”

6.17 [5] <§§6.4, 6.5> Consider executing the following code on the pipelined data-
path of Figure 6.36 on page 416:

add $72. $3. %1
sub $4, §3, %5
add $6, $3, §7
add $/. %6, %1
add $8, §$2, 36

At the end of the fifth cycle of execution, which registers are being read and which
register will be written?

SEER: KE6.36— M B R AT Bk A BRI T B K B iR B
BRANPIERE, S&BESHPATEDT:
B—RIGLEWB M B, FHERR2EHEAN
B LIRS MEM BB, subf§4ENOOP#:/E
BZAIEATEEXE" M B, ALUIEEHAT" add” #fE
BT IDIREG" B, FArasS6MSLIE# 1L H
BHAIRSE P B, IRAIESEH

ID/EX.MemRead

] i o DExMemfead and (ID/EX.RegisterRt=IF/ID.RegisterRs
. A or ID/EX.RegisterRt=IF/ID.RegisterRt)
£ - ID/EX
T 4 |" b EX/MEM
"ICOI‘IU‘QI! u M = = WB MEMWE
2 X L I_
= IF/ID N 0= J |_ EX | WB —
O Al - =l | E===:|
o
—
" M
u
X
5 Reglsters .
¥ e anl M
£ ALU
Instruction £ () > u
memoty [™] [M Data W
u me mory
X
IF/ID.FegisterRs , e,
IF/ID. RegisterRt C 1
IF/ID. RegisterRt L
IFD. RagisterRd :
ID/EX. RegisterRt Sa— J L— sy e
E“:_..._,-IFurwardlngk\."'_,
e unit ;
P.416/56.36 Ty c2

Cl: EXIMEM.RegWrite and EX/MEM. RegisterRd # 0
and (EX/MEM. RegisterRd=ID/EX. RegisterRs or EX/MEM. RegisterRd=ID/EX. RegisterRt

C2: MEM/WB.RegWrite and MEM/WB. RegisterRd = 0
and (MEM/WB. RegisterRd=ID/EX. RegisterRs or MEM/WB. RegisterRd=ID/EX. RegisterRt

6.18 [5] <§56.4, 6.5>> With regard to the program in Exercise 6.17, explain what the
forwarding unit is doing during the fifth cycle of execution. If any comparisons are
being made, mention them.

BEER, BOLTHTI e FIN 2ad ﬁ ﬁ E
BRI, 558 KHUTRLATT > o dd $5. $3. $7

5417 WB” frBt, #H1E RS EMEM/WB . Reg
fa4%27E MEM" r i, #E#IfE RS 7EEX/IMEM.Reg !
537 EXE" B, =5 RSE7EID/EX.RegH
542475 ID/IREG" &, $847EIF/ID.RegH
5 IF B, R4 IEMIEH
“EER R SR

Cl: EXIMEM.RegWrite and EX/MEM. RegisterRd # 0
and (EX/MEM. RegisterRd=ID/EX. RegisterRs or EX/MEM. RegisterRd=ID/EX. RegisterRt

C2: MEM/WB.RegWrite and MEM/WB. RegisterRd # 0
and (MEM/WB. RegisterRd=ID/EX. RegisterRs or MEM/WB. RegisterRd=ID/EX. RegisterRt

RHE LB B &, BAIBERN:
C1: EXIMEM.RegWrite=1(sub#§4). EX/MEM. RegisterRd($4) # 0. EX/MEM. RegisterRd ($4) #

ID/EX. RegisterRs($3) < EX/MEM. RegisterRd($4) # ID/EX. RegisterRt($5)
C2: MEM/WB.RegWrite=1 (add#§4) and MEM/WB. RegisterRd ($2)# 0 . MEM/WB. RegisterRd($2) #

ID/EX. RegisterRs($3) - MEM/WB. RegisterRd($2) # ID/EX. RegisterRt($7)
LA 0. CLFMIC2E A B # R &, IUATERER.

add $/. $6. %1
add 8, %2, $6

6.19 [5] <§96.4, 6.5> With regard to the program in Exercise 6.17, explain what the
hazard detection unit is doing during the fifth cycle of execution. If any comparisons

are being made, mention them.
SEER: BOLTHTH TR FFHIA:

SR, F&ESHIPITHRRD T :

82 1E“WB"FrE, #iHilfE REFEMEM/WB.Reg
5427 MEM" [T, ##iE B F7EEX/MEM.Reg

T8 31 EXE" B, #HilfF B5ETEID/EX.RegH

1544745 IDIREG" B, 1547EIF/ID.RegH

85 IF" HrEt, R4 IEREH

“Hazard” (B k)t 4444 -

ID/EX.MemRead and ID/EX.RegisterRt=IF/ID.RegisterRs or

ID/EX.RegisterRt=IF/ID.RegisterRt)
MRAE LA B B L2l &, RRIRGRN:

add
sub
add
add
add

32,
4,
$5,
$/.
$8,

$3.
$3,
$3,
$6.
$c,

$1
$5
$7
$6

ID/EX.MemRead=0(addf§4"). ID/EX. RegisterRt($5) #IF/ID. RegisterRs ($6)

ID/EX. RegisterRt($5) # IF/ID. RegisterRt($1)

YiBA: KA 4HTAEEXERT BHE S 8 add”, Fril B KN Z AR TTAZRt. B

PL, ID/EX. RegisterRtA & 728 $5M A2 $3!
LA A A Bl &8, FrAATREHZE.

6.21 (5] <56.5> We have a program of 107 instructions in the format of "Tw, add,
Tw, add,..." The add instruction depends (and only depends) on the 1w instruction
right before it. The Tw instruction also depends (and only depends) on the add

instruction right before it. If the program is executed on the pipelined datapath of
Figure 6.36 on page 416:

a. What would be the actual CPI?
b. Without forwarding, what would be the actual CPI?

SHER:

a. FENIwis4SFladdig4d 2 BHFELE— N oad- useF#EE K (i 2 1K6.3679 %k
WEE KR , FrAENMwis S Maddig 4 2 B ER — IR /K &%,
Mmadd$s & Flwie 4 0 EdE B K 2 B 6.36 9 1« B & kil 444, T
i AR R R E R .

Bl SERRAICPIAL.5

b. MBREHEEE, NEFLIwIESMaddigS 2 ABSARANEE, XHEFL
e Y T HER = 4PA Re e .

Bl: CPIK3

i H R KB DL

, |add rl,r2,r3
° lw r4,0(rl)

" | stall

O

' add r6,r4,r7
" llw r8,0(r6)

Time (clock cycles)

- ID/RF. .EX
R >
Im €g)E
Im Ll Reg

[| Reg

R RN, RAEIWESFHRE—IRHE!

MEM:i WB
H Dm Reg
>
(-
/

Im L

ANEF B 5 KB O

, |add rl,r2,r3
n
f stall
| stall
@)
- | lw rd,0(rl)
d
e | stall
;
* stall
add r6,r4.,r7

B RS DAE D0 B ZHAERT e A, AR

Time (clock cycles)

IF ID/RF. EX
>
Im Reg|: ¥~

MEM

—

Im

o
=

P

F
Y
(D

Im

R AL AR5 182 18] X B RH 28 R 1l vl A o |

>
C

bubbl:

bubbls

Im [

6.22 (5| <§§6.4, 6.5> Consider executing the following code on the pipelined data-
path of Figure 6.36 on page 416:

Tw 4, 100(%7)
sub 36, $4, $3
add $2, $3, $5

How many cycles will it take to execute this code? Draw a diagram like that of Figure
6.34 on page 414 that illustrates the dependencies that need to be resolved, and pro-
vide another diagram like that of Figure 6.35 on page 415 that illustrates how the

code will actually be executed (incorporating any stalls or forwarding) so as to
resolve the identified problems.

ZHEFE: NamrEF LA H:
AORH B R TR, MIPATIX B S 75 8™ i o il 31
HAKH R BR, MIATZBAHS T Z L1 B 3

S~ N O -

HCDQ_—ﬁo

lw $4,100(%$2)

sub $6,$4,%$3

add $2,%$3,%5

Time (clock cycles)

IF | ID/RF %(MEM : WB
Im L |Reg é Dm/D_Reg
Im || Reg /;::< Dm Reg
13 gl
Im | Reg %(Dm Reg
C

B A7 A SALE S VU e R A S5 R 4G {E, {Hsub$e<7ER DU
TR ER, B LA subdg & 1R — AN A #A AT !

Time (clock cycles)

v

15 % R A B L
IF | ID/RF
| 1w $4,100($2) Im L | Reg
n
S
t |Sub->nop Im
r.
? sub $6,$4,%$3
d
e
" |add $2,$3,$5

EEXHT B, @ BR R, AIAA — A B RAAAE, EEXH B RATHEATRZE, 18-

1) fEisubfg &= HHE S MM N0, Sub#fEEL Anop

Im

Nz

(

Reg

2) fEIF/IDF/K B B Sub$i-@ AtaddI5- i, TAYEHIGRLEX subTis &3

3) [YHIPCAZ, TAFERIdksEaddis4

AMERE R RIS DL

S~ N O -

HCDQ_—ﬁo

Time (clock cycles)

1=

ID/RF

Im

add r1,r2,r3

[

Reg

MEM

stall
stall

lw r4,0(r1)
stall

' stall

add r6,r4,r7

Im |

Im

Dm

bubbl

bubble}

1 bubbl

Im [

bubb

= | @~ &

b

B A S MO oA ZHAER 5 AM, EAER
R IS AR AT < 2 1] X 2 BHL28 PR i AT 11 !

Lt
nble
Vas

Dbl

<—

€

6.23 [15] <§6.5> List all the inputs and outputs of the forwarding unit in Figure

6.36 on page 416. Give the names, the number ot bits, and brief usage for each input
and output.

SHEE: E6.367 Rk Rl &z HIE 5 N
Cl: EXIMEM.RegWrite and EX/MEM. RegisterRd # 0
and (EX/MEM. RegisterRd=ID/EX. RegisterRs or EX/MEM. RegisterRd=ID/EX. RegisterRt

C2: MEM/WB.RegWrite and MEM/WB. RegisterRd = 0
and (MEM/WB. RegisterRd=ID/EX. RegisterRs or MEM/WB. RegisterRd=ID/EX. RegisterRt

01 Hc2=1K
10 4c1=1k}

LA W, E6.369 # & BT A Fldr ok -

ForwardA (ForwardB) =

ID/EX.RegisterRs
ID/EX.RegisterRt
EX/MEM.RegisterRd
EX/MEM.RegWrite

operand reg number, compare to see if match

operand reg number, compare to see if match

destination reg number, compare to see it match
TRUE if writes to the destination reg
MEM /WE .RegisterRd destination reg number, compare to see if match
MEM /WE .RegWrite TRUE if writes to the destination reg

Number
of bits Usage

ForwardA 2 forwarding signal

=

ForwardB 2 forwarding signal

6.30 [7] <§§6.4, 6.5> In the example on page 425, we saw that the performance
advantage of the multicycle design was limited by the longer time required to access
memory versus use the ALU. Suppose the memory access became 2 clock cycles long.
Find the relative performance of the single-cycle and multicycle designs. In the next
few exercises, we extend this to the pipelined design, which requires lots more work!

SHEER: HRIGLPTHTIREE A BIIT TR

Instruction Instruction Register ALU Data egister
class memory read operation memory wrlte

R-type 400 ps
Load word 600 ps
Store word 200 50 100 200 550 ps
Branch 200 50 100 (0] 350 ps
Jump 200 200 ps

G EAE R AT BRI BAfE, B R 0 bR 1 B I i A A AR, h600ps
2 B EET, KBS AR

load: 7; Store: 6; ALU: 5; beq: 4; Jump: 4
DLSPECINT2000J8 & 454 sl 4., CPI1=0.25x7+0.10x6+0.52x5+0.11x4+0.02x4 = 5.47
A2 BB AN 2P B G, 2 B B8 s i) i 4 B 4 100ps
L — 45352 BIPAT I [B] 4 100x5.47=547ps

HLBR AR : 2 AL R R !

6.33 [20] <§§6.2—6.6> In the example on page 425, we saw that the performance
advantage of both the multicycle and the pipelined designs was limited by the longer
time required to access memory versus use the ALU. Suppose the memory access
became 2 clock cycles long. Draw the modified pipeline. List all the possible new for-
warding situations and all possible new hazards and their length.

SHEER: FEREANA ARG, RAKEEST UTF7HrE:

IF1 IF2 LD _B—V E"f’“ !
L. i

instructionl IF1 w2 —0 1D @‘ Evi%i
-

MEMN [MEM2 [

MEM1 [

T
=
i1l

instruction?2 IF1 IF2

—..l

inStrUCti0n3 IF1 IF2 '—I -I-D EX MEM1 [MEM2 EFB

L

. . | "
InStrU Ct|0n4 IF1 1F2 '_| D ﬁ MEM1 | MEM?2 EVB '
| o

MBS NIWIEAHT, instruction1-4RPATIE R BHINHEE. (ARER KD 4 (A
R FIN. instructionlFE 24 stall”; instruction2F E 14 stall”; JF4EFeS3mT L
Wi # R Rk (FERLSAAEEIEERD

HE—&FELS HNALUFES R, instruction1-4M#ATHEN B ZEBR . WHESLTEREHEE
S #R AT LB IS 3 R Rk (R84 ARREIEERD

6.34 [20] <§§6.2-6.6> Redo the example on page 425 using the restructured pipe-
line of Exercise 6.33 to compare the single-cycle and multicycle. For branches,
assume the same prediction accuracy, but increase the penalty as appropriate. For
loads, assume that the subsequent instructions depend on the load with a probability
of 1/2, 1/4, 1/8, 1/16, and so on. That is, the instruction following a load by two has
a 25% probability of using the load result as one of its sources. Ignoring any other
data hazards, find the relative performance of the pipelined design to the single-cycle
design with the restructured pipeline.

SHEBER. BIEPA2SFHIH T, 4.

S EEDRE R ITHIERAER R A

o TAfEHI0: 200ps (4 H100ps IR ANHrED

« ALUFIIN#:#%: 100ps

o FfrAME (£/B) : 50ps

REMUX, #EHHIT. PC. ¥ BRALMR BRI E A LR, 5SHEN:

25%HU8. 10%FEH. 52%ALU. 11%4y 7. 2%k

W) F i ses 7 s, RN EER? feg e

(1) BREBAG: BEIELSE A E KB 20 R BN 58 5%

(2) Hke A IR, B3E2. BUUEE. 34T AL, 2. BREEAMHrE

XF 1B A 77 3K
I A R B K Fe Rk E, NMiZ&load$i4, A600ps
FrLL, NZ&F8-2 BT I 18] 4 600N(ps)
o F kg K
FRERERAER AR B R G, HRKELES T E.
XfTbeq, HTWIER, WALNER, EHWNER, WANER (5RALERRKZEH
b, Z2—EEERM, ZHEZET I , #MCPI=1/4x3+3/4x1=1.5
XfFload, BEEE—&KNA3AN (BHZE2AN) B BEEE_&NA24 (BHELN) A
#, URHITRSHEATREZE, HMCPI=1/2x3+1/2x1/4x2+3/8x1=2.125
X TALUTE S, BEJEWEEEA TR Tl 5% K gk, #HCPI=1
X} T-Storetg 4, PaRKEHFER, WCPI=1
X TJump#ed, HESIFEME RS e E Bk, HCPI=3
SEHICPIN: 2.125x25%+1x10%+1x52%+1.5x11%+3x2%=1.38
FTL, N£HE4 TR IR] 4 1.38x 100xN=138N(ps)

WK 2 B #A R 600/138=4.381% .

6.35 [10] <§§6.4-6.6> As pointed out on page 418, moving the branch comparison
up to the ID stage introduces an opportunity for both forwarding and hazards that
cannot be resolved by forwarding. Give a set of code sequences that show the possible

forwarding paths required and hazard cases that must be detected, considering only
one of the two operands. The number of cases should equal the maximum length of
the hazard if no forwarding existed.

SEELER: RIE6.6.27HIsH A, o LR E/ERITZIDME, SRECRAK
HIT e R RARBIRE R (Bl BEARIAITE, A1) AEITH RS
A ZIRAKI T IETR KB B, R Sl R R AFE R
#ilan, CAFHIBIFH, RS SZHEBARE, NaddisSEXEMBHATHIZE R
(ZEEXIMEMR/K B & F2%) 1] LA R4 beqff 2 HEXEM BR 3T EHLE: (4
) , BuRbeqfs SEIDM LB HIE, BRAKLFERT (Z£) .

4 B+,
lw $1, 100 ($2) im L | Reg >?E om Reg a5 g e At —
add $1, $1, 8 S T(&84t E —A

? > load-use##z B
CRTE R

FrbL, ZBHp1-222 8] i« BHLZE” F12-3 2] f)“ 35 K AR AN] 3 ok 4% R SR TH R !

6.36 [15] <%$6.6> We have a program core consisting of five conditional branches.
The program core will be executed thousands of times. Below are the outcomes ot
each branch for one execution of the program core (1 for taken, N for not taken).

Branch 1: T-T-T

Branch 2: N-N-N-IN
Branch 3: T-N-T-IN-T-IN
Branch 4: T-T-T-N-T
Branch 5: T-T-IN-T-T-N-T

Assume the behavior of each branch remains the same for each program core execu-
tion. For dynamic schemes, assume each branch has its own prediction buffer and
each buffer initialized to the same state before each execution. List the predictions
for the following branch prediction schemes:

a. Alwavs taken
b. Always not taken
c. 1-bit predictor, initialized to predict taken

d. 2-bit predictor, initialized to weakly predict taken

What are the prediction accuracies?

SHEFR: PR R =TI IERIREL / B Bl 1] *100%

a.B1: R-3, W-0; B2: R-0, W-4; B3: R-3, W-3; B4: R-4, W-1; B5: R-5, W-2; 60%
b.B1: R-0, W-3; B2: R-4, W-0; B3:R-3, W-3; B4: R-1, W-4; B5: R-2, W-5; 40%
c.B1: R-3, W-0; B2: R-3, W-1; B3: R-1, W-5; B4: R-3, W-2; B5: R-3, W-4; 52%
d.Bl: R-3, W-0; B2: R-3, W-1; B3: R-3, W-3; B4: R-4, W-1; B5: R-5, W-2; 72%

6.39 [10] <§§6.4—6.6> The example on page 378 shows how to maximize perfor-
mance on our pipelined datapath with forwarding and stalls on a use following a
load. Rewrite the following code to mininize performance on this datapath—that is,
reorder the instructions so that this sequence takes the most clock cycles to execute
while still obtaining the same result.

1w b2, 100(%6)
1w $3, 200(%$7)
add b4, $2, $3
add b6, $3, $5
sub P8, $4, %6
1w $7, 300(%$8)
beq $7, $8, Loop

SHER. BAA LRUEERMRERE, WARAZEUEEF Hilload-use B KHx %
lw $2, 100($6)

add $4, $2, $3 XA A 0] B ?
lw $3, 200($7)

add $6, $3, $7

sub $8, $4, $6

lw $7, 300($8)
beqg $7,3%$8, Loop

6.40 [20] <§6.6> Consider the pipelined datapath in Figure 6.54 on page 461. Can
an attempt to tlush and an attempt to stall occur simultancously? If so, do they result
in conflicting actions and/or cooperating actions? It there are any cooperating
actions, how do they work together? If there are any conflicting actions, which should
take priority? Is there a simple change you can make to the datapath to ensure the
necessary priority? You may want to consider the following code sequence to help
you answer this question:

beq $1, $2. TARGET 4 assume that the branch is taken
Tw $3., 40(34)
add 372, $3. §4
sw 37, 40(34)
TARGET: or 31, $1, §7

SEER:

MEERETLIEE, beqifSREIDBRHIERBER, HitEEEMILK., X4
HWrEHERE (taken) B, IDBRSFEE—Flushfs s, M5 F—&E8BUEKTES
(IW) #5550, IR EBHIIXPC, WM/KZLEHHE—NEE, NEBHIEAFE
AT . WAL &4“Flush” 1 Stall”

BREbeqfe KoL AW E B it vH K E 7T, ERAEMEMM BN, NIZE
MEMIrB &= — N Flush{ 5, Lk, ZEIDFrE IR 2]load-useMsE, FH5lid
—K“stall” . B, XFEH T, FlushFiStall& R K4 .

Figure6.45 on P.461 =S 3 L S TR v S a2) SO B A

F Flush I o3) B sk 3E AT BELZE” A0 b k] 2
/" Hazard __- [
— detaction
'.\. unit ./-'
Control We |_hlEM.-WB
lF‘ D I..I\ . fl:l > N {EX M WB—=
) v : [| | L
™
4 Shift Y
|Ia1‘t 2] o)
- i = LU
r & [_| . X \

Registers = b
-...__ Inrii:nc;:;n . - ; fi\— >"'l'-'- ' mue:[:ry B T
u
. C] H| X

£ .

§| -

) v

1]I sign \ =

1a:tand)
\/
— Lm ‘
u
-] . :J - -] H
— Forwarding (= -‘
unit

. .\ _/'-i

=14

TR A 0 SCTIIN Ak B) 500 A

IF.Flush=Br. and Eq.
1= Hush

FET H hr AL ; e
(72)->PC

—— 40#454 beq $1,$3, 7THIIDr Bx —

i aetectian | i

urlt
L

—— e ———

1r
[XER Jo——r

R IF/IDH§54FK0, ZAnopfE4<

= = =
-

. Iw 34, S$7) : bubble (nap) I' be-q $1,$3,7 i
J=uEh I | |
| | | BeqiEIUIRABLERKE
=5 | PORENT, WAL
| |
w [EXMEM
=1 U M = WE
oy
=~ M

fETESF B 7250 04T
E &R T “bubbl
Clock 4

4,,
|

j::lnlﬂlding

urit

-
L-ﬂ-'—

BACK

T AT AN BELZE AU) Tt K S aE T

~ ID/EX.MemRead
Hazard ¥ iDExMemAead and (ID/EX.RegisterRt=IF/ID.RegisterRs

detection |..

e
| unit or ID/EX.RegisterRt=IF/ID.RegisterRt)
m o s
£ 150, [H2E ID/EX
= — caellre
E _,/ \%E ?El‘é'\ ! WE - EX/MEM
III III M r_
® > Control | [u M - e MEM/WB
y / X |
= IID 0= J L \ |—- WB [—
2 N . A EX - |
28
f“_‘\
@ = *IM
u
i | x
S Registers N
v Q * nal
< ALU
Instruction 2 - ol))
memory ™ [T M Data
= U memory
X
'fE“ 'E:HE ﬁén % IF/ID.EegisterRs L -
580, fEPC IF/ID.FogisterPt
FIF/IDAZS | IF/ID. RegisterBt ny |M
’ | IF/ID. RogicterRd b :
ID/EX.RegisterPi T J L— —
ﬂ'*_,_TFarwarcllng\-"'__,
m—-'-.. UI"I" _l.'l i
\‘-\._ v -.-/__1

b =

EX.Flush
F.Fluzh |
_| 11D Flush
H:l:rm_'r! |
""i datu@rr.;itTlun = + . v
' Y,
% ID/EX U
s =] X
i, T : 4
[— ” i3 e EX/MEM
Control : : =l u M 'I'..Iﬂ we MEMWB
I", I,l'l | X | Cause X L_ .
IF,fl[} ‘~_ 2 EX _I—. EPC i I WE :
- i .‘;-‘\ — " P Zero
:E by
4 ;{M M
e *] | u g
> = X
4 Registers L), it r—-\
1 ; b JALU L
.- = e
BO000 150 =1 pcll.| Instruction . | 1 - it !
memory M s
1 = = U ' memory | | J
X
{;\ i :
- M
- = L
id - o X
L | || L ; |]
| Forwardingl o |
—-5\ unit |

Rl 2 Flush” M1 Stall” i, <7240 &, Beh, S {RIEFlushfIfEE% E R !
A LUR AR U BB B S, RN IR A B

6.47 [10] <56.9> The tollowing code has been unrolled once but not vet sched-
uled. Assume the loop index is a multiple of two (i.c., $10 is a multiple of cight}:

Loop : Tw $2,
sub $4 .
sSwW $4,
1w $5 .,
sub $6 .,
S W o,
addi $10,
bne £10,

LT ?)ﬁffEF', ﬁ24\load-use'§'ﬁﬁiﬂ~/l\?§%ﬂ'§"ﬁﬁ
6o sa (SKMAEE) , PTUSLESIKIZE, iR
D($10) 3EM8+S=131 /A%,

ac$10y EARXRE? RRAMEABRE, !

$5, $3 KHAFBHSTNEIGTERE)N, B2
4(%$10) BB L1IRIER FE8+5=13N A, FiHE&

B10, 8 REIEEERTI, MR FEe+2=104 A
$30, Loop

Schedule this code for fast execution on the standard MIPS pipeline (assume that
it supports addi instruction). Assume initially $10 is 0 and $30 is 400 and that
branches are resolved in the MEM stage. How does the scheduled code compare

against the original unscheduled codeﬁ":

T, DAL RETE MR, HER T load-use

SE2Z, MAHERERARLE Y. BR, A EfEK GRIE , Kk

Loop: Tw $2, 0(%$10)
Tw §5, 4(%10)
sub §4, $2, §3
sub $6, $5, §3
sw §4, 0($10)
sw §6, 4(%$10)
addi $10, $10, 8

HAEFE8+3=111 .
HIERAER B A00/14=1007%, {EFFIRELH100/2=50
L FTCAMRAL 5 BIFE PP A 11x50=550 /&
FERF A13x50=6501"FE A
‘DL, PEREIRE T 650/550=1.18%
K P TR BB A TR (W de P 3L A8)i, B ey 2
BJE LK FE8+3=114N A1, A&k R84 A A
YAk 5 BIFR I F 11x 1+8x49=403/ J& #
JRFE R 13x1+10x49=503" & #H

bne $10, $30, Loop MEER4EE T 650/503=1.29, 550/403=1.36

A JEIRE T 503/403=1.254%

6.48 |20| <§6.9> This exercise is similar to Exercise 6.47, except this time the
code should be unrolled twice (creating three copies of the code). However, it is

not known that the loop index is a multiple of three, and thus you will need to
invent a means of ensuring that the code still executes properly. (Hint: Consider
adding some code to the beginning or end of the loop that takes care of the cases

not handled by the loop.)

SEHER:
& B 4 B — IR R ARE RS EE =4784 (w,subFflisw) , EEITEIR IR
BOE20R58, BRI =G, TS RAR AW B EAEN KRR, DR
IERTT G RIS RS B IEM 45 R
BT A3)G, BEREOTRERITE M 3. 6. 9. 12, 15, 18,, #KT
4. 6. 8. 10, 12, 14, 16. 18. BEAVERECKYE, HLLT =FHTfE:
1) #BEREZ4. 10, 16... , FE3PEEEFHIXT N RECA3. 94 15 ..., DT1K
2) BAERER6. 12, 18 ..., IEHFEER3NMEE, XRE2MEE, A2 A0
3) #EIREAZS. 14, 20..., FZIFMHEHEAIEIFHIXT MIRECN6. 12, 18 ..., T2k

FrbL, F& BRI INABRAEIREOH HEER)

a3 FETT 3R HIACRE Bean A B

FEIEARIITES, AW SR T RITER IS

INF3, REE, HEFlleftoverdtiT4 R
AIAbEE; B, FEANTER

FEIEIA A, AW IR BR A IE LR 3H

B8, ARE, NERBERIER
(finish4d)

ELRATAE S, A e BIE—IK, RE

KW RELER, G, B4R
(finish&b) 5 &N, HANEEIE—IX
FHIAAREBE R ERE ST T

1 #wHER: BARNERET IS
bgt. bne; fEHIME—4jumpiad(1
IRPHZE)FI— 4 304

2) load-useER: 1kER2IK
REBAERBUAH400/4=100, MFEFRREL
100/3=331k, #MFE1IRERAE
(12+3+3)x33+1+4+2+3+4=608

LE AT TE P AR ES M B 4 3R = T
650/608=1.07{/% 550/608=0.901%

JSRE B AE TR B 1% 60 T 247 B

Loop:

Lleftover:

Finish:

addi
bgt
1w
Tw
1w
sub
sub
sub
SW
SW
SW
bne
Jjump
1w
sub
SW
addi
beq
1w
sub
SW

$10,
$10,
$2,
$5,
$7,
$4,
$6,
$8,
$4,
$6,
$8,
$10,
Fini
$2,
$4,
$4,
$10,
$10,
$5,
$6,
$6,

$10, 12
$30, Leftover
-12(%10)
-&8(%10)
-4(%10)
$72, 33
§5, 33
§7, 33
-12(%10)
-&8(%10)
-4(%10)
$30, Loop
sh
-12(%10)
§72, 33
-12(%10)
$10, -8
$30, Finish
4(%$10)
55, 33
4(%10)

B 8 K FH] SR S T 7 2% »
45 Rz AN] !

Loop: addi $10, $10, 12

KA T (VB TR), P T bgt $10, $30, Leftover
SIERVERECHA400/4=100, PEIFIXREHN100/3=33K, #b Tw $2, -12(%$10)
RLREEAE Tw $5, -8(%10)

1) #BHER: Tw $7, -4(%10)

bt RER G LIRER, F—IRANEE — RN R; sub %4, $2, 33

bnets AR R AR, TRMAER; sub 36, %5, 3

beqisd BARY, TR, sub $8, %7, $3

SW $4, -12(%10)

jump#E& KA —IKPHZE sw $6, -8(3%10)

2) load-use K. 1IREL2IK S W $8, -4(%$10)

S R EREA - bne $10, $30, Loop
(12+3)x1+12x32+1+4+2+3+1=410 jump Finish
RTINS, Mases T Leftover: Tw %2, -12(%10)
608/410=1.48f% sub %4, §2, $3

L RTTET A AR R 53 B T swo e, m1e(ell)
503/410=1.22f addi $10, 510, -8

beg $10, %30, Finish

N
KT RBERAHE . S RFFOSTeE. B7F ;h ig %ﬁﬁé
R T R BB B . VKB S5 1 B4, 2 - . $5,

SW $6, 4(%10)
AL E BETE R TESA W K Eload-use B [, Finish:
HREA IR E20%; AR RBUETEALS
PR, BEG2%-10%; FERATMLAK
"Etee, ZERE30%-59%

403/410=0.98f%

6.49 [20] <§6.9> Using the code in Exercise 6.47, unroll the code four times and
schedule it for the static multiple-issue version of the MIPS processor described on
pages 436—439. You may assume that the loop executes for a multiple of four times.

SHEER:

BRI B PR REIF IR, BAE — 2R S MIPSTUK & HHATI, AT EAFZ LT 5
T

ALU =¥ Branch lw B sw & a2 LA T 5752310
Loop: | addi $20, $10, 0 lw $2, 0($10) TR PAT T2 7 HOBR R
name Dependence (%K #i

Iw $5, 4(310) X %antidependence, AEKE
sub $4, $2, $3 w $7,8($10) sziki)
sub $6, $5, $3 lw $9, 12($10) FH$20%#: T $10
sub $8, $7, $3 sw$4,010) semmirET R T,
sub $11, $9, $3 sw $6, 4($10) HAERESANFIIE?
addi $10, $10, 16 sw $8, 8($20)

bne $10, $30, loop sw $11, 12($20)

