
第六章 利用流水线提高性能

作业参考答案

参考答案：

P.373中ALU操作时间为200ps。

a. ALU操作时间缩短25%不能加快流水线指令速度。

因为流水线的速度最终由时钟周期的宽度决定，而它不会缩短时钟周期。

b. 如果ALU操作时间延长25%，那么，ALU时间将变为250ps，这样，ALU操作将变成瓶
颈，使得流水线的时钟周期为250ps，其效率降低（250-200)/250=20%。

参考答案：

a. 一个程序核心模块共106条指令，每条指令花100ps完成，则在非流水线处理器上执行的

时间为：100 x106=100us.
b. 若在一个20级流水线的处理器上执行，理想情况下，每个时钟周期为：100/20=5ps，所

以，程序执行时间为5 x106=5us. 快了100/5=20倍
c. 流水线并不是理想的，流水线段之间数据的传递会产生额外的开销。

一方面，这种开销使得一条指令的执行时间被延长，即影响 Instruction latency
另一方面，这种开销也拉长了每个流水段的执行时间，即影响 Instruction throughput

参考答案：有三个RAW数据冒险，其中一个是load-use数据冒险，需要“阻塞”一个时钟

参考答案：有四个RAW数据冒险

（1）第一条add指令和第二条sub指令之间

（2）第一条add指令和第三条lw指令之间

（3）第一条add指令和第四条add指令之间

（4）第三条lw指令和第四条add指令之间

其中，（1）、（2）和（3）是关于寄存器$3的数据冒险，可以通过“转发”解决

（4）是关于寄存器$6的数据冒险，是load-use数据冒险，不能通过“转发”
解决，将发生一次“阻塞”

参考答案：图6.36是一个带“冒险”检测和“转发”处理的五阶段流水线数据通路。

第五个时钟结束时，各条指令的执行情况如下：

第一条指令在“WB”阶段，寄存器$2正被写入

第二条指令在“MEM”阶段，sub指令是NOOP操作

第三条指令在“EXE”阶段，ALU正在执行“add”操作

第四条指令在“ID/REG”阶段，寄存器$6和$1正被读出

第五条指令在“IF”阶段，指令正被读出

P.416图6.36

C1: EX/MEM.RegWrite and EX/MEM. RegisterRd ≠ 0
and (EX/MEM. RegisterRd=ID/EX. RegisterRs or EX/MEM. RegisterRd=ID/EX. RegisterRt

C2: MEM/WB.RegWrite and MEM/WB. RegisterRd ≠ 0
and (MEM/WB. RegisterRd=ID/EX. RegisterRs or MEM/WB. RegisterRd=ID/EX. RegisterRt

C2

C1

ID/EX.MemRead
and (ID/EX.RegisterRt=IF/ID.RegisterRs

or ID/EX.RegisterRt=IF/ID.RegisterRt)

参考答案：第6.17题中的‘指令序列为：

C1: EX/MEM.RegWrite and EX/MEM. RegisterRd ≠ 0
and (EX/MEM. RegisterRd=ID/EX. RegisterRs or EX/MEM. RegisterRd=ID/EX. RegisterRt

C2: MEM/WB.RegWrite and MEM/WB. RegisterRd ≠ 0
and (MEM/WB. RegisterRd=ID/EX. RegisterRs or MEM/WB. RegisterRd=ID/EX. RegisterRt

第五个时钟中，各条指令的执行情况如下：

指令1在“WB”阶段，控制信息等在MEM/WB.Reg中
指令2在“MEM”阶段，控制信息等在EX/MEM.Reg中
指令3在“EXE”阶段，控制信息等在ID/EX.Reg中
指令4在“ID/REG”阶段，指令在IF/ID.Reg中
指令5在“IF”阶段，指令正被读出

根据以上“转发”检测条件，得到比较结果为：
C1: EX/MEM.RegWrite=1(sub指令)、EX/MEM. RegisterRd($4) ≠ 0、EX/MEM. RegisterRd ($4) ≠

ID/EX. RegisterRs($3) 、EX/MEM. RegisterRd($4) ≠ ID/EX. RegisterRt($5)
C2: MEM/WB.RegWrite=1 (add指令) and MEM/WB. RegisterRd ($2)≠ 0 、MEM/WB. RegisterRd($2) ≠

ID/EX. RegisterRs($3) 、MEM/WB. RegisterRd($2) ≠ ID/EX. RegisterRt($7)

由此可知：C1和C2都不满足“转发”条件，所以不需要转发。

“转发”检测条件为：

参考答案：第6.17题中的‘指令序列为：

第五个时钟中，各条指令的执行情况如下：

指令1在“WB”阶段，控制信息等在MEM/WB.Reg中
指令2在“MEM”阶段，控制信息等在EX/MEM.Reg中
指令3在“EXE”阶段，控制信息等在ID/EX.Reg中
指令4在“ID/REG”阶段，指令在IF/ID.Reg中
指令5在“IF”阶段，指令正被读出

根据以上“冒险阻塞”检测条件，得到比较结果为：

ID/EX.MemRead=0(add指令)、ID/EX. RegisterRt($5) ≠IF/ID. RegisterRs ($6)
ID/EX. RegisterRt($5) ≠ IF/ID. RegisterRt($1)

说明：因为当前在EXE阶段的指令为“add”，所以目的地址应该为Rd而不是Rt。所

以， ID/EX. RegisterRt为寄存器$5而不是$3!

由此可知：不满足“冒险”条件，所以不需要阻塞。

“Hazard”(冒险)检测条件为：

ID/EX.MemRead and ID/EX.RegisterRt=IF/ID.RegisterRs or
ID/EX.RegisterRt=IF/ID.RegisterRt)

参考答案：

a. 因为lw指令和add指令之间存在一个load- use数据冒险（满足图6.36中数

据冒险检测条件），所以每个lw指令和add指令之间要有一次流水线阻塞。

而add指令和lw指令之间的数据冒险满足图6.36中的“转发”检测条件，故可

通过数据转发解决冒险。

即：实际的CPI为1.5
b. 如果没有转发，则在每条lw指令和add指令之间将会有两个阻塞，这样每条

指令相当于都要有三个时钟才能完成。

即：CPI为3

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

lw r4,0(r1)

add r6,r4,r7

lw r8,0(r6)

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm

使用“转发”时，只有lw指令后需要一次阻塞！

stall Im Reg bubble bubble bubble

使用“转发”的情况：

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

lw r4,0(r1)

add r6,r4,r7

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im Reg

stall
stall

Im

Imstall

stall

通过寄存器写口/读口分别安排在前半/后半周期，在不使用“转
发”时使得每条指令之间只要阻塞两次就可解决！

bubble bubble

bubble bubble bubble bubble

Im bubble bubble bubble bubble

Im bubble bubble

bubble

不使用“转发”的情况：

参考答案：从后面的图中可以看出：

若采用“转发”技术，则执行这段代码需要8个时钟周期

若不采用“转发”技术，则执行这段代码需要11个时钟周期

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw $4,100($2)

sub $6,$4,$3

add $2,$3,$5

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

寄存器$4在第四时钟周期结束时才有值，但sub指令在第四周
期开始就要用，所以必须使sub指令延迟一个周期执行！

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw $4,100($2)

sub $6,$4,$3

add $2,$3,$5

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

在EX阶段内，通过“冒险”检测，发现有一个数据冒险存在，在EX阶段结束前进行阻塞，做：
1) 使sub指令控制信号冲刷为0，Sub操作变为nop
2) 使IF/ID流水段中的Sub指令不被add指令冲掉，下个周期继续对sub指令译码
3) 使当前PC不变，下个周期继续取add指令

bubbleImSub->nop Reg bubble bubble

使用转发时的情况：

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

lw r4,0(r1)

add r6,r4,r7

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im Reg

stall
stall

Imstall

stall

通过寄存器写口/读口分别安排在前半/后半周期，在不使用“转
发”时使得每条指令之间只要阻塞两次就可解决！

不使用转发时的情况：

Im bubble bubble bubble bubble

Im bubble bubble bubble bubble

bubble bubble

Im bubble bubble

bubble

参考答案：图6.36中“转发”检测条件和控制信号为：

C1: EX/MEM.RegWrite and EX/MEM. RegisterRd ≠ 0
and (EX/MEM. RegisterRd=ID/EX. RegisterRs or EX/MEM. RegisterRd=ID/EX. RegisterRt

C2: MEM/WB.RegWrite and MEM/WB. RegisterRd ≠ 0
and (MEM/WB. RegisterRd=ID/EX. RegisterRs or MEM/WB. RegisterRd=ID/EX. RegisterRt

由此可见，图6.36中“转发”单元的输入和输出为：

ForwardA (ForwardB) = 01 当c2=1时
10 当c1=1时

参考答案：各类指令所用功能部件的时间为

存储器操作变为两个时钟周期后，其单周期数据通路的时钟周期不变，为600ps
而多周期数据通路中，各类指令的时钟周期变为：

load：7；Store：6；ALU：5；beq：4；Jump：4
以SPECINT2000混合指令比例计算，CPI=0.25x7+0.10x6+0.52x5+0.11x4+0.02x4 = 5.47
存储器操作变为两个时钟周期后，多周期数据通路的时钟周期为100ps，
故一条指令的执行时间为100x5.47=547ps

比较结果：多周期比单周期快！

instruction1

instruction2

instruction3

instruction4

参考答案：存储器操作变为两个时钟周期后，其流水线包含了以下7个阶段：

当第一条指令为lw指令时，instruction1-4的执行情况由咖啡色（不能转发）和红色（可转

发）表示。instruction1需要2个“stall”； instruction2需要1个“stall”；后续指令3可以

通过“转发”解决（后续指令4不是数据冒险）。

当第一条指令为ALU指令时，instruction1-4的执行情况由兰色表示。说明后续所有的数据冒

险都可以通过“转发”解决（后续指令4不是数据冒险）。

各主要功能单元的操作时间为：

• 存储单元：200ps （被分成100ps的两个阶段）

• ALU和加法器：100ps
• 寄存器堆（读 / 写）：50ps
假设MUX、控制单元、PC、扩展器和传输线路都没有延迟，指令组成为：

25%取数、10%存数、52%ALU、11%分支、2%跳转

则下面实现方式中，哪个更快？快多少？

（1）单周期方式：每条指令在一个固定长度的时钟周期内完成

（2）流水线方式：取指1、取指2、取数/译码、执行、存取1、存取2、写回七个阶段

参考答案：根据P425中的例子，已知：

对于单周期方式：

时钟周期将由最长指令来决定，应该是load指令，为600ps
所以，N条指令的执行时间为600N(ps)

对于流水线方式：

存储器操作变为两个时钟周期后，其流水线包含了7个阶段.
对于beq，若预测正确，则为1个周期，若预测错误，则为3个周期（与原五段流水线相

比，多一个取指周期，多阻塞了1个周期），故CPI=1/4x3+3/4x1=1.5
对于load，随后第一条则为3个（阻塞2个）周期；随后第二条则为2个（阻塞1个）周

期，以后的指令都不需要阻塞，故CPI=1/2x3+1/2x1/4x2+3/8x1=2.125
对于ALU指令，随后的数据相关指令都可通过转发解决，故CPI=1
对于Store指令，不会发生数据冒险，故CPI=1
对于Jump指令，总要等到译码结束才能确定转移地址，故CPI=3
平均CPI为：2.125x25%+1x10%+1x52%+1.5x11%+3x2%=1.38
所以， N条指令的执行时间为1.38x100xN=138N(ps)

流水线比单周期快600/138=4.38倍。

参考答案：根据6.6.2节中所指出的，将分支比较操作提前到ID阶段，会导致来不及

通过转发来解决数据冒险（即：若不提前的话，本可以通过转发解决的）

当分支指令依赖于仍在流水段中的结果时，便来不及通过转发来解决。

例如，以下的例子中，如果分支比较不提前，则add指令EXE阶段执行的结果
（在EX/MEM流水段寄存器）可以转发给beq指令的EXE阶段进行比较（红
线），但如果beq指令在ID阶段比较的话，就来不及转发了（兰线）。

lw $1, 100 ($2)

add $1, $1, 8

beq $1, $3, 10

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

在给出的例子中，
第一条指令和第二
条指令中还有一个
load-use数据冒

险，也不能通过转
发来消除。

所以，该例中1-2之间的“阻塞”和2-3之间的“转发”都不可通过转发来消除！

参考答案：预测准确率=预测正确次数 / 总预测时间 *100%
a. B1: R-3, W-0； B2: R-0, W-4； B3: R-3, W-3； B4: R-4, W-1； B5: R-5, W-2；60%
b. B1: R-0, W-3； B2: R-4, W-0； B3: R-3, W-3； B4: R-1, W-4； B5: R-2, W-5；40%
c. B1: R-3, W-0； B2: R-3, W-1； B3: R-1, W-5； B4: R-3, W-2； B5: R-3, W-4；52%
d. B1: R-3, W-0； B2: R-3, W-1； B3: R-3, W-3； B4: R-4, W-1； B5: R-5, W-2；72%

参考答案：要使得上述代码段的性能最差，则只要让代码段中出现load-use冒险最多

lw $2, 100($6)
add $4, $2, $3
lw $3, 200($7)
add $6, $3, $7
sub $8, $4, $6
lw $7, 300($8)
beq $7, $8, Loop

这样做有什么问题吗？

参考答案：

从给定的图可以看出，beq指令是在ID段确定是否转移，并计算转移地址的。当
判断要转移（taken）时，ID段会产生一个Flush信号，使得下一条已被取出的指令
(lw)被清0，并控制将转移地址送PC，流水线被阻塞一个时钟后，从转移地址处开始
执行。故不会同时发生“Flush”和“Stall”

假定beq指令的分支判断和转移地址计算没有提前，还是在MEM阶段时，则在
MEM阶段会产生一个Flush信号，此时，在ID阶段同时检测到load-use冲突，并引起
一次“stall”。因此，这种情况下，Flush和Stall会同时发生。

Figure6.45 on P.461 题意：图中“冲突”检测和“分支判断”是否可能同
时分别要求进行“阻塞”和“冲刷”？

带静态分支预测处理的数据通路

IF.Flush=Br. and Eq. 40#指令 beq $1,$3, 7的ID阶段

将IF/ID中指令字清0，变为nop指令

控制转移

目标地址->PC

转移目标地址

(72)->PC

使指令转到72处执行

上条错取指令变成了“bubble”

Beq前面的指令还在流水线

中继续执行，没有任何影响

BACK

带“转发”和“阻塞”检测的流水线数据通路

ID/EX.MemRead
and (ID/EX.RegisterRt=IF/ID.RegisterRs

or ID/EX.RegisterRt=IF/ID.RegisterRt)

使“写使能”信
号为0，使PC
和IF/ID不变！

使控制信号
清0，阻塞

随后指令！

①

②

③

Zero

同时检测到“Flush”和“Stall”时，会产生矛盾，此时，必须保证Flush的优先级更高！

可以将两个检测电路合在一起，并加上并行判优电路

参考答案：优化调度后的代码段为：

总的操作次数为400/4=100次，循环次数为100/2=50
次，所以优化后的程序用11x50=550个周期
原程序为13x50=650个周期
所以，性能提高了 650/550=1.18倍

循环中，有2个load-use冒险和一个控制冒险
（3次阻塞），所以共有5次阻塞，因而每次循
环共需8+5=13个周期。

不预测时，优化调度指令顺序后，消除了load-use
冒险，有一个控制冒险（3次阻塞），因而每次循
环共需8+3=11个周期。

采用简单静态预测(初始预测转移)时，性能如何？

这样对吗？ 不采用任何预测时，如是！

采用静态预测(初始预测转移)时，怎样？

最后1次循环需8+5=13个周期，前面各
次预测都能成功，故只需8+2=10个周期

最后1次需8+3=11个周期，前面各次只需8个周期
优化后的程序用11x1+8x49=403个周期
原程序为13x1+10x49=503个周期
性能各提高了 650/503=1.29，550/403=1.36
优化后提高了 503/403=1.25倍

参考答案：

题目给出的一次循环展开代码中循环体有三条指令（lw,sub和sw）, 已知循环次
数是2的倍数，将循环体展开三次后，循环结束条件的判断要作相应的调整，以保

证展开后的代码能得到正确的结果。

展开为3次后，操作次数可能的情况为3、6、9、12、15、18、… …，故对于
4、6、8、10、12、14、16、18、… … 的操作次数来说，有以下三种可能：

1) 操作次数是4、10、16… ，按3的倍数循环的对应次数为3、9、15 … ，少了1次
2) 操作次数是6、12、18 … ，正好既是3的倍数，又是2的倍数，不多不少

3) 操作次数是8、14、20… ，按3的倍数循环的对应次数为6、12、18 … ，少了2次

所以，需要在代码中加入操作次数调整部分

循环展开3次的代码段如右所示。

在循环的开始，判断是否剩下的循环次数
小于3，是的话，转到leftover进行结束

前处理；否则，进入循环

在循环中，判断循环次数是否正好是3的
倍数，是的话，则直接跳转到结束
（finish处）

在结束前处理中，先补充操作一次，然后
判断是否结束，是的话，跳转到结束
（finish处）；否则，再补充操作一次

右边代码段的性能分析如下：

1）控制冒险：循环内有两条分支指令

bgt、bne；循环外有一条jump指令(1
次阻塞)和一条分支指令

2）load-use冒险：1次或2次
总操作次数为400/4=100，则循环次数
为100/3=33次，补充1次操作

总的周期数为
(12+3+3)x33+1+4+2+3+4=608

周期数计算是在无预测的情况下进行的

比前面两种代码的性能分别提高了

650/608=1.07倍 550/608=0.90倍
假定采用简单静态预测方法，
则结果应该不同！

采用静态预测(初始预测转移)时，性能分析如下：

总操作次数为400/4=100，循环次数为100/3=33次，补
充1次操作

1）控制冒险：

bgt只在最后1次转移，第一次和最后一次预测错误；

bne指令每次都发生转移，无预测错误；

beq指令发生转移，无预测错误；

jump指令发生一次阻塞

2）load-use冒险：1次或2次
总的周期数为：

(12+3)x1+12x32+1+4+2+3+1=410

本题说明了是否优化调度、循环展开次数如何选择、是否
采用预测等方面对程序性能的影响。你的结论是什么？

比前面两种代码的性能分别提高了

503/410=1.22倍
403/410=0.98倍

采用静态预测后，性能提高了
608/410=1.48倍

优化调度能消除循环内大量load-use冒险，
性能约提高20%；循环展开次数选择不当会
影响性能，降低2%-10%；采用预测会大大
提高性能，约提高30%-59%

参考答案：

将代码段中的循环展开四次，放在一个2发射MIPS流水线中执行时，可以按以下方

式进行调度。

ALU 或 Branch lw 或 sw

Loop: addi $20, $10, 0 lw $2, 0($10)

lw $5, 4($10)

sub $4, $2, $3 lw $7, 8($10)

sub $6, $5, $3 lw $9, 12($10)

sub $8, $7, $3 sw $4, 0($10)

sub $11, $9, $3 sw $6, 4($10)

addi $10, $10, 16 sw $8, 8($20)

bne $10, $30, loop sw $11, 12($20)

用重命名机制避免了寄存器$10
在最后两行中的名字依赖关系

name Dependence（或反依赖

关系antidependence，不是真

实依赖）

用$20替换了$10

这种超标量方式下，
其性能又如何呢？

