
第五章 数据通路及其控制

作业参考答案

答：若RegWrite=0，则所有的需要写结果到寄存器的指令（如：R-Type指令、load指令等）都

不能正确执行，因为寄存器不发生写操作；

若ALUop0=0， 则除add外的R-type指令不能正确执行（参看图5-12中ALUop的定义）

若ALUop1=0， 则Branch指令不能正确执行（参看图5-12中ALUop的定义）

若Branch=0，则Branch指令可能出错，因为永远不会发生转移；

若MemRead=0，则Load指令不能正确执行，因为存储器不能读出所需数据；

若MemWrite=0，则Store指令不能正确执行，因为存储器不能写入所需数据；

此外，

若Regdst=0，则所有R-Type指令都不能正确执行，因为目的寄存器指定错误；

若ALUSrc=0，则所有I-Type指令（除Branch）都不能正确执行，因为第二个

操作数不是立即数扩展；

若MemtoReg=0，则所有的Load指令执行错误，因为寄存器写入的是ALU输出 ……

参看图5-18可以很快得到结论！

答：若RegWrite=1，则所有不需要写结果到寄存器的指令（如：Store指令、Branch指令等）

都不能正确执行，因为寄存器发生了不需要的写操作；

若ALUop0=1， 则Load/Store和Branch指令可能不正确（参看图5-12中ALUop的定义）

若ALUop1=1， 则Load/Store和R-type指令可能不正确（参看图5-12中ALUop的定义）

若Branch=1，则除Branch指令指令外的其他指令可能不正确

若MemRead=1，则除Load指令外的其他指令可能不正确

若MemWrite=1，则除Store指令外的其他指令可能不正确

此外，

若Regdst=1，则Load指令和I-Type指令都不能正确执行，因为目的寄存器指定错误；

若ALUSrc=1，则所有R-Type指令和Branch指令都不能正确执行，因为第二个

操作数为立即数扩展，而不是寄存器数据；

若MemtoReg=1，则所有R-Type指令执行错误，因为寄存器写入的是存储器读出的数据

……

答： jr指令为R-Type格式： 0 31 0 0 0 8
其功能是读出31号寄存器送PC，指令中的Rt和Rd都是0，因为0号寄存器可以

读出，但不能改变其值，所以，写入信号对0号寄存器不起作用，因而，可以把jr指
令看成是结果送PC的加法指令。即： ($31)+($0)->$0，同时($31)+($0)->PC

因此，原R-Type指令的数据通路不需要改动，而只要增加ALU结果送PC的数

据通路，并对控制信号作相应修改即可。具体如下：

（1）增加一个PC的来源：ALU输出->PC，因此再加一个MUX
（2）新加一个控制信号Jreturn，用于对新加MUX的控制

（3）控制器的设计中要考虑R-Type指令的func=001000的情况，即在图5-12和5-
13的表中加入相关的组合情况，以反映到控制器的设计中

（思考：ALU控制器的逻辑如何修改？主控制逻辑要修改吗？）

0

1

JReturn

1 X 0 0 1 0 0 0 0010

JReturn

0

1

上述的做法只修改ALU控制逻辑而不修改主控制逻辑，所以无需对图5-18进行修改。

也可以采用修改主控制逻辑的方式，此时，主控制逻辑必须同时也对func字段进行译

码，因而修改工作变得更复杂。

(思考：如何对主控制逻辑进行修改，以实现Jr指令的功能？)

根据书中图5-12可以得到以下图5-13，在此基础上再加上Jr指令的控制信号

答：该题是指用单周期数据通路实现5.11 中的自增装入指令（或5.14中的交换指

令）时，要修改寄存器堆，否则，无法实现。解释为什么？

自增装入指令的功能：

lw $rs, L($rt)
addi $rt, $rt, 1

交换指令的功能：

使用额外寄存器的情况：

add $rtemp, $rs, $zero
add $rs, $rt, $zero
add $rt, $rtemp, $zero
不使用额外寄存器的情况：

xor $rs, $rs, $rt
xor $rt, $rs, $rt
xor $rs, $rs, $rt

可以看出，用硬件实现自增装入指令和交换指

令，在一个周期内需至少写两次寄存器。

原单周期数据通路中，一条指令在一个时钟内

完成，数据总是在时钟的下降沿被写入到寄存

器堆，即本条指令执行的结果总是下条指令开

始（即下个时钟到来）时，才被写到寄存器堆

中，因此一个周期只能写一次寄存器。

所以，若不修改原来的寄存器堆，则单周期数

据通路无法实现自增装入指令和交换指令。

答： 朋友的建议是有效的。

从图5-18的表中，可以看出， MemtoReg和MemRead、ALUSrc的取值在R-
Type和lw指令时一样，在sw和beq指令时MemtoReg取值任意。

所以控制信号MemtoReg可以用MemRead或ALUSrc来代替。

因为MemRead和ALUSrc的取值在sw指令时取值不同，所以不能相互替代。

答：使用额外寄存器的情况：

add $rtemp, $rs, $zero
add $rs, $rt, $zero
add $rt, $rtemp, $zero

不使用额外寄存器的情况：

xor $rs, $rs, $rt
xor $rt, $rs, $rt
xor $rs, $rs, $rt

假定该指令占x%，其他指令占(1-x)%
则用硬件实现该指令时, 程序执行时间为原来的

1.1*(x+1-x)=1.1 倍
用软件实现该指令时，程序执行时间为原来的

3x+1-x=（2x+1）倍

当1.1 < 2x+1 时，硬件实现才有意义

由此可知，x > 5%

答：若RegWrite=0，则所有的需要写结果到寄存器的指令（如：R-Type指令、load指令等）都

不能正确执行，因为寄存器不发生写操作

若MemRead=0，则所有指令不能正确执行，因为指令不能读出

若MemWrite=0，则Store指令不能正确执行，因为存储器不能写入数据
若IRWrite=0，则所有指令都不能正确执行，因为IR中不能写入新的指令

若PCWrite=0，则所有指令都不正确，因为取指令阶段PC+4不能写入PC
若PCWriteCond=0，则Brabch指令不能正确执行，因为不能写入转移目标地址到PC

此外，

若Regdst=0，则所有R-Type指令都不能正确执行，因为目的寄存器指定错误；

若ALUSrcA=0，则所有R-Type、I-Type指令、load/Stroe指令都不能正确执行，因为第一个

操作数总是PC的值，而不是寄存器rs中的值

若MemtoReg=0，则所有的Load指令执行错误，因为寄存器写入的是ALU输出

……

答：若RegWrite=1，则所有不需要写结果到寄存器的指令（如：Store指令、Branch指令等）

都不能正确执行，因为寄存器发生了不需要的写操作；

若MemRead=1，则除Load指令外的其他指令可能出错，读出的错误数据可能影响结果

若MemWrite=1，则除Store指令外的其他指令不能正确执行，存储器发生了数据写入

若IRWrite=1，则所有指令都不能正确执行，因为IR中写入的可能不是指令

若PCWrite=1，则所有指令都不正确，每个阶段都会写入PC，使下条指令地址发生错误

若PCWriteCond=1，则除Brabch指令外的所有指令都可能出错，因为PC中可能会写入转

移目标地址

此外，

若Regdst=1，则Load指令和I-Type指令都不能正确执行，因为目的寄存器指定错误

若ALUSrcA=1，则所有R-Type指令和Branch指令都不能正确执行，因为第二个

操作数为立即数扩展，而不是寄存器数据；

若MemtoReg=1，则所有R-Type指令执行错误，因为寄存器写入的是存储器读出的数据

……

答： lui指令为I-Type格式： 001111 00000 Rt Imm16

其功能是把16位立即数送到寄存器Rt的高16位，低16位为0。只要对原扩展器

稍加修改使输出为Imm16x216，然后和$zero相加，结果送Rt。具体修改如下：

（1）在原来的符号扩展器上进行修改，使其具有三种扩展功能(见下页)；
（2）增加一个控制信号EXop，扩展器能根据控制信号EXop的值进行扩展操作

EXop=01: 零扩展；EXop=10: 符号扩展；EXop=11: 低位零扩展；

（3）控制信号的取值除EXop之外，其他控制信号类似于R-Type指令；

（4）由于扩展器进行了修改，原来ALUSrcB=10和ALUSrcB=11的地方要增加一

个EXop控制信号，并设置正确的值。

Imm16

零
扩
展

符
号
扩
展

低
位
零
扩
展

EXop

16 32M
U

X

01

10

11

Extender

Extender

EXop

Op=‘lui’
EXop=11
ALUSrcA=1
ALUSrcB=10
ALUop=00

luiExec

RegDst=0
RegWrite
MemtoReg=0

luiCompletion

EXop=10

EXop=10

实现该指令需要
4个时钟周期！

分析如下：如果只有一个读口，那么原来A和B可以同时读，现在只能先读一个到

A，然后再读一个到B。

A和B共用一个读地址端口，所以要加一个多路选择器，用于选择不同的寄存

器号；读出的数据只有一个端口，可能要送到A，也可能要送到B，所以要加一个控

制信号，以确定该写到A还是B中。

增加的两个控制信号为：

（1）RegRead: 用于控制多路选择器,为0则读口地址为Rs，为1则为Rt
（2）AWrite: 用于控制读出数据写入A还是B, 为1写入A，为0则写入B

可以有三种做法：（在原有限状态机基础上考虑）

(1) 原来的周期1分成两个周期，分别读A和B，并在其中一个周期中完成转移地址计算

(2) 在原来的周期1中先读A，这样在R-Type和Branch指令中要增加一个周期来读B
(3) 在原来的周期1中先读B，这样，load/store和Ori指令都要增加一个周期重新读A，

R-Type和Branch指令中也要增加一个周期来读A
不同做法得到的CPI不同！ 哪个CPI最大？哪个最小？ 做法(2)的CPI最小！

RegRead

0
1

AWrite

RegRead=0
Awrite=1

RegRead=1
AWrite=0
ALUSrcA=0
ALUSrcB=11
ALUop=00

投机计算转移地址
可以在两个周期的
任意一个中进行。

这是第(1)种做法的示

意图，每条指令都比
原来增加一个周期！

1

答：图3-26所示的SPECINT2000混合指令频率为：

Load: 25%
Store:10%
Bran: 11%
Jump:2%
ALU: 52%

从有限状态图分析，得知：

M1中上述各类指令的CPI分别为5、4、3、3、4
M2中上述各类指令的CPI分别为4、4、3、3、3
M3中上述各类指令的CPI分别为3、3、3、3、3

5 4 3
4 4 3
3 3 3
3 3 3
4 3 3

CPIM1=25%x5+10%x4+11%x3+2%x3+52%x4=4.12

CPIM2=25%x4+10%x4+11%x3+2%x3+52%x3=3.35

CPIM3=25%x3+10%x3+11%x3+2%x3+52%x3=3

MIPSM1=1G / 4.12 = 242.7

MIPSM2=3.2 G / 3.35 =955.2

MIPSM3=2.8 G / 3 = 933.3

M2和M3对M1作了不同的改变，M2的做法效果更好，速度最快！
但当所有指令都是load/store指令时，M3的速度最快！

考虑思路同前面一题，也是先算出各种指令的CPI，然后根据机器的时钟频率算
出MIPS数，对MIPS数进行比较。

只不过两题中引起机器性能变化的原因不同而已。

答：图3-26所示的SPECINT2000混合指令频率为：

Load: 25%
Store:10%
Bran: 11%
Jump:2%
ALU: 52%

数据存取为双周期的机器M1中上述各类指令的CPI分别为：6、5、3、3、4
数据存取为单周期的机器M2中上述各类指令的CPI分别为：5、4、3、3、4

6 5
5 4
3 3
3 3
4 4

CPIM1=25%x6+10%x5+11%x3+2%x3+52%x4=4.47

CPIM2=25%x5+10%x4+11%x3+2%x3+52%x4=4.12

MIPSM1=5.6G / 4.47 = 1253

MIPSM2=4.8G / 4.12 =1165

MIPSM3=6.4 G / 5.47 = 1170

由此可见，数据存取改为双周期的做法效果较好。

进一步把取指令分成两个周期的机器M3的各类指令的CPI分别为：7、6、4、4、5

CPIM3=25%x7+10%x6+11%x4+2%x4+52%x5=5.47
（实际上就是每个指令都加一个时钟周期，所以CPIM3=CPIM1+1=5.47

由此可见，进一步把取指令改为双周期的做法使MIPS数变小了，所以不可取。

为什么两者都使时钟频率提高0.8G，但效果却不同？

因为数据存取只涉及到load/Store指令，而指令存取涉及到所有指令！

beq $t3, $zero, done
compare: lw $t4, 0($t1)

lw $t5, 0($t2)
bne $t4, $t5, done
addi $t1, $t1, 4
addi $t2, $t2, 4
addi $t3, $t3, -1
bne $t3, $zero, compare
addi $t2, $zero, 0

done:

参考答案如下：

假定比较次数为100，则所需的指令数为：1+100x7+1=702条指令

其中，load指令为：100x2=200条， 周期数为5x200条=1000
branch指令为：1+2x100=201条， 周期数为3x201条=603
addi指令为：1+3x100=301条， 周期数为4x301条=1204
所以，总周期数为1000+603+1204=2807

参考答案：
（1）异常原因可以记录在Cause寄存器中

（2）断点（发生异常的指令或下条指令的地址）存放在EPC中

（3）异常有三种：故障、自陷、终止

故障：由正在执行的指令产生的使当前指令无法继续执行的 “异常事件”。处理完后

回到发生故障的指令重新执行（如：缺页）或终止程序执行（如：溢出、除数为
0、非法操作码、保护错等）

自陷：人为在程序中先设定一条特殊的访管或自陷指令。如80x86中的指令“INT n”
执行到这条指令时，CPU自动中止正在执行的程序，转到一个特定的内核管理程序

去执行，执行完后，回到这条指令后面的一条指令（断点处）开始执行。

终止：发生不可恢复的硬件致命错误而使机器无法继续执行指令。如：硬件线路故

障、电源掉电等。此时，系统被终止并重新启动操作系统。

参考答案：

a. “除数为0”异常可以在取数/译码周期进行检测

b. “溢出”异常可以在R-Type指令的完成周期进行检测

C. “无效指令”异常可以在取数/译码周期进行检测

d. “外部中断”异常可以在每条指令的完成周期进行检测

e. “无效指令地址”异常可以在取指令周期检测

f. “无效数据地址”异常可以在load/store指令的地址计算周期检测

包括以下几个方面的设计：

• 指令的汇编形式、机器码格式（与原有指令兼容）

• 指令的功能（用流程图和RTL表示）

• 数据通路修改

• 控制信号增加或修改

•有限状态机的修改

指令的汇编形式：bcmp rs, rd, rc, rt1, rt2
指令的机器码格式：

指令的功能：

比较个数由rc指出，如果rc=0则什么都不做，继续执行下条指令，否则：

rs和rd所指内存单元依次顺序比较其内容，直到发生以下情况：

（1）有一对数据不相等，此时，返回不相等数据对的地址在rs和rd中
（2）所有数据都相等，此时，返回0存放在rs中
rt1和rt2是临时寄存器，在指令执行过程中他们和rs、rd、rc都会被破环。

用一个程序段来描述为：

op rs rt rd rt1 rt2
061116212631

6 bits 5 bits5 bits5 bits5 bits5 bits
0

beq rd, $zero, done
comp: lw rt1, 0(rs)

lw rt2, 0(rt)
bne rt1, rt2, done
addi rs, rs, 4
addi rt, rt, 4
addi rd, rd, -1
bne rd, $zero, compare
addi rs, $zero, 0

done:

指令功能复杂，在给出RTL描述之前，先画出流程图：

if Reg[rd]=0 then Exec-Next else
loop: Addr R[rs] , R[rt1] Mem[Addr]

Addr R[rt] , R[rt2] Mem[Addr]
if R[rt1]≠R[rt2] then Exec-Next else

R[rs] R[rs]+4, R[rt] R[rt]+4
R[rd] R[rd]-1

if R[rd]=0 then
R[rs] 0, Exec_Next

else
go to loop

指令功能用RTL描述为：（除公共操作外）

Reg[rd]=0

≠0

0->Reg[rs]

Reg[rd]
≠0

=0

Reg[rd]-1

Reg[rs]+4, Reg[rt]+4

M[Reg[rs]]->rt1, M[Reg[rt]]->rt2

Reg[rt1]=Reg[rt2]

=

≠

数据通路的修改：

• 在Mem的Addr处改MUX以选择不同的取数地址

• 在Reg的WAddr处改MUX以选择不同的存数地址

• 在Reg的RAddr加MUX以选择不同的读数地址

• 在Reg的WData改MUX以选择不同的写数据

• 在ALUSrcB处加“1”和“0”，以执行“-1/-0”操作

控制信号的增加或修改：

• 对新加或更改的MUX的控制信号进行修改或增加

有限状态机的修改：

• 增加若干新状态，每个状态在一个周期内完成

1

0

0

以下四个控制信号要修改
– IorD

• 0: PC->Address
• 1: ALUout->Address
• 2: A->Address
• 3: B->Address

– RegDst
• 0: Inst[25-21]->WriteReg
• 1: Inst[20-16]->WriteReg
• 2: Inst[15-11]->WriteReg
• 3: Inst[10- 6]->WriteReg
• 4: Inst[5- 1]->WriteReg

– ALUSrcB
• 0:
• 1:
• 2:
• 3:
• 4: 0->ALUSrcB
• 5: 1->ALUSrcB

– MemtoReg
• 0: Memory Data ->Reg’Write Data
• 1: ALUout -> Reg’Write Data
• 2: 0-> Reg’Write Data

新加两个控制信号

– ReadReg1：控制Read Reg1的MUX
• 0: Inst[25-21]->ReadReg1
• 1: Inst[20-16]-> ReadReg1
• 2: Inst[15-11]-> ReadReg1
• 3: Inst[10- 6]-> ReadReg1

– ReadReg2：控制Read Reg2的MUX
• 0: Inst[20-16]-> ReadReg2
• 1: Inst[5- 1]-> ReadReg2

定义不变

bcmp
PCWrCond=0
ALUOp=Sub

ReadReg1=10

ALUSelB=100
ALUSelA=1

ZF=1

ZF=0
MemRead
IorD=10

MemtoReg=01
RegWr

RegDst=011MemRead
IorD=11

MemtoReg=01
RegWr

RegDst=100

ALUOp=Sub

ReadReg1=11

ALUSelB=000
ALUSelA=1
ReadReg2=1

ZF=1

ZF=0

ALUOp=add

ReadReg1=00
ALUSelB=010

MemtoReg=00
RegDst=000

RegWr

1

ALUOp=sub

ReadReg1=10
ALUSelB=101

ZF=1

MemtoReg=10
RegWr

RegDst=000
ZF=0

ALUOp=sub

ReadReg1=10
ALUSelB=101

MemtoReg=01
RegWr

RegDst=010

给每个状态按顺序编号
分别为10,11,……,23
微指令按顺序存放并执行
有三个分支点，都是根据
标志ZF来进行分支的，
用一个三个ROM或一个

地址修改逻辑电路实现微
指令的分支。

对AddrCtl控制信号进行修改，实现三个新分支点

000 Next µaddr = 0
001 Next µaddr = dispatch ROM 1
010 Next µaddr = dispatch ROM 2
011 Next µaddr = µaddr + 1
100 Next µaddr = 分支1处输出
101 Next µaddr = 分支2处输出
110 Next µaddr = 分支3处输出

Opcode

State Reg

1

Adder

ROM2 ROM1

Mux

0
3 012

控存（CS）
µaddr

AddrCtl

分支1处：ZF=0则Next µaddr = 0；ZF=1则Next µaddr = µaddr+1
分支2处：ZF=0则Next µaddr = µaddr+1；ZF=1则Next µaddr = 0
分支3处：ZF=0则Next µaddr = 01011；ZF=1则Next µaddr = µaddr+1

分支1和分支2处可以各用一个MUX实现

分支3处用一个地址修改逻辑，其功能为：

当ZF=0时，将输入10111改为01011, ZF=1时不修改

0 0

Zero

0 1 0 1

456
5

地址修改逻辑中要改变的是前三位地址，用三
个“异或”门分别与“ZF”的反码进行操作。

在有限状态图中每个状态里加上
AddrCtl控制信号的取值即可。

假定比较次数为n≠0，根据有限状态机可知：

最坏的情况下，用硬件实现该指令所需的时钟周期数为2+1+12n+1=4+12n
最坏的情况下，用软件实现该指令所需的时钟周期数计算如下：

load指令为：2n条， 周期数为5x2n=10n
branch指令为：(1+2n)条， 周期数为3x(1+2n)=3+6n
addi指令为：(1+3n)条， 周期数为4x(1+3n)=4+12n
所以，总周期数为10n+3+6n+4+12n=7+28n

由此可知：用多周期数据通路硬件实现块比较指令比软件至少快一倍多！
原因是什么？

主要有两个原因：

（1）软件方式下，循环内每条指令都要取指令、译码/取数；而硬件实现时不需要

（2）软件方式下，每条指令保存结果，下条指令要用时再取；而硬件方式下，中

间数据可以直接使用

思考1：如果不是用多周期数据通路，而是单周期数据通路，情况怎样？

用软件实现更合算，因为时钟周期宽度以最复杂指令为准！

思考2：如果rt1和rt2用内部寄存器的话，有没有好处？

可以简化数据通路、减少控制信号线、减少时钟数。给出整个解决方案。

