FHIE BEE g S A

(R EoE S



5.2 [10] <€§5.4> Describe the effect that a single stuck-at-0 fault (i.e., regardless of
what it should be, the signal is always 0) would have for the signals shown below,
in the single-cycle datapath in Figure 5.17 on page 307. Which instructions, if any,
will not work correctly? Explain why.
Consider each of the following faults separately:
a. RegWrite =0
b. ALUopO =10
c. ALUopl =0
d. Branch =0
e Memgead =0 2% FEI5-187] LR PR A 2114 |
f. MemWrite =0
%: #HRegWrite=0, NIFFENFHEESRIFAHENIESL (W: R-Typeti4d . loadfE25) #f
ABEIEFAPAT, BATFFSARETERLE;
#ALUop0=0, Mkradd4MrIR-typets & AREIEFHIAT (SFES-12FALUopHIE )
#ALUop1=0, M|Branchif&AREIEWHIAT (SFES-12FALUopHIE )
#iBranch=0, NIBranchif& A gEsE, BIAKEASKERR,
#MemRead=0, M|Load¥§ & NEEIEMHAT, FATFEMEaSAaeie i rREdE;
#rMemWrite=0, NStoreff S ANERIEHIAT, FAFMESSAE NI HUE;
HAh,
#Regdst=0, NIFTAR-Typeta & EABRIEHIAT, BA B K EF AR5 EHR;
#ALUSrc=0, NIprEI-Typets4d (Branch) #AEEEFHIIT, BAE-A
BEBA LR R s
#MemtoReg=0, NIFrH K Loadfs &P UTHI R, FRAFTHARBEARZALUAWEH ...



5.3 [5] <§5.4> This exercise is similar to Exercise 5.2, but this time consider
stuck-at-1 faults (the signal is always 1).

%: #RegWrite=1, NFrEAFEELRIFHAENIES (W: Storefd4 . Branchig &%)

HABIEFAPIT, FATASKE T ATERNSHRIE;

#ALUopO0=1, lLoad/StorefiBranchif& e NIER (& E5-12FALUop ) E X)

#rALUopl=1, M|Load/StoreMR-typeti4 I AIER (SF E5-129ALUopHIE X)

#iBranch=1, WIERBranchig <3544 HAth+5 S AT BEAS IEHH

#iMemRead=1, MIBgLoad#g44MrF AT 4] HEA IEH

FiMemWrite=1, NIFkStoredi4sMHIHAhTE 4TI HEARIER

BeAk,

#rRegdst=1, W|Load¥84HMI-Types SERARIEHIAT, KA HKIEF A6 E 4 1%

#ALUSrc=1, NFTAR-Typets4FMBranchif & AREEMBIT, EHHHE A
BAEEON LIS B, AR FFEEE;

#iMemtoReg=1, NIFFHER-TypetE4H#UTH IR, FATFFRE AN MR HKEE



5.8 [15] <§5.4> We wish to add the instruction jr (jump register) to the single-cy-
cle datapath described in this chapter. Add any necessary datapaths and control sig-

nals to the single-cycle datapath of Figure 5.17 on page 307 and show the necessary
additions to Figure 5.18 on page 308. You can photocopy these figures to make it
faster to show the additions.

&, jrfeS HR-Typetg=x: | 0|31 0| 0|0 | 8
HIE 231 T HFFHRIEPC, AT HRFIRIERZO, K A0S EHFFERAT LA
B, EARKERIME, B, EAGSNOSHFESAEEH, Eim, =g
REMRG REPCHIINETES. Bl:  ($31)+($0)->$0, [FIAF($31)+($0)->PC
Kltt, JRR-Typefa MR EBEAFTELS), MREMEIMALUZ RIEPCHIEL
WK, FHNIEHIE SEMANMESEI] . BAuT:
(1) BIm—/PCHIRIE: ALUHIH->PC, FEFEIN—AMUX
(2) Fm—MEHHSSIreturn, FHTXHMMUX £ 5]
(3) TEHIBAEITPELER-Typets 4 Hfunc=00100011E#., BI7EE5-12F15-
1I3HRFIMAMRKIAETEIN, LA BRBIFEFIES K&
(B ALUEFIZRRZEITES? ZEGIEEEBHG? )
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RIEH T E5-120 LB 2 UL F&5-13, 7EER EFN _ EIris S KEEE S

—Awop | Awopo | v [P Fs [ 72 [ i [Fo| operstion  BLOWY
0 0 X X X X X X 0010

X i X X X X X X 0110

1 X X X 0] 0 0 O 0010 O
1 X X X 0 0 1 0 0110

i X X X 0 1 (0] 0 0000

1 X X X 0 1 0 4 b 0001

1 X X X 1 0 i o 0111

1 X o 0 1 0 0 o0 0010 1

EREIMIE RERALUERRZE A S EEHEE, Pl E5-18H 1T 1B M.

WATLCRA GBS EEFIEER T, s, ER M0 R B fun o7 BT
B, s TAFRARER IR,

(B2 i EEFERAETEE, SEIIrFELHIZIRE? )



5.12 (5] <§5.4> Explain why it is not possible to modify the single-cycle imple-
mentation to implement the load with increment instruction described in Exercise
5.12 without modifying the register file.

% SRR R A SOEE B SEIN5. 11 P B AIRS (E5. 149 KRS et
) I, BBlEaaE, AN, TEREI. WRANA

BN TR HIThEE:
lw $rs, L($rt)
adldi $rt. it 1 ATBAE th, FEAESEEL AR A RIS BT
%, E—NAHAT R DOERIRTFS
AT AR HI LI EE: R SRR, —&IEE— N

RS ST SR BUR MR T RS A H T
add $rtemp, $rs, $zer0  gei, EMIASIGARITHLRME FAIELT
o 815, St Szer0 o CHIFAETEREIR) B, AE Bl it
add $rt, Srtemp, $zero w1 gy AR BES — KA AR

MERBOMTIEOND: g, ser gk, MR

xor srs, 9rs, St B T AR AR B &
xor $rt, $rs, $rt

xor $rs, $rs, $rt



5.13 [7] <§5.4> Consider the single-cycle datapath in Figure 5.17. A friend is pro-
posing to modify this single-cycle datapath by eliminating the control signal Mem-
toReg. The multiplexor that has MemtoReg as an input will instead use either the
ALUSrc or the MemRead control signal. Will your friend's modification work?
Can one of the two signals (MemRead and ALUSrc¢) substitute for the other? Ex-

plain.

Z: MRMBIGERERIM.

ME5-1811F T, FTLLEH, MemtoRegfiMemRead. ALUSrcfIBUEZER-
TypeflIwFg 4 —FkE, fEswhlbeqig4itMemtoReg BUEERE

B LA A5 5 MemtoReg il A MemRead BRALUSrc R

K HMemRead MIALUSrc K EEEsWIE S I BUEAE], FrAANEEAH B 2R

Memtu— Reg | Mem
RegDst Write | Read Branch ALUOpO

R{format
W
SW

beq

L]
=
Lo

S
L )
[

T o | 0 1 0
1 1 0 0 0
X 0 0 0 0
X 0 { 0 1

|-~ Q

=
L=
L)




5.14 [10] <§5.4> MIPS chooses to simplify the structure of its instructions. The
way we implement complex instructions through the use of MIPS instructions is

to decompose such complex instructions into multiple simpler MIPS ones. Show
how MIPS can implement the instruction swap $rs, $rt, which swaps the con-

tents of registers $rs and $rt. Consider the case in which there is an available reg-
ister that may be destroyed as well as the care in which no such register exists.

[f the implementation of this instruction in hardware will increase the clock period
of a single-instruction implementation by 10%, what percentage of swap operations
in the instruction mix would recommend implementing it in hardware?

%: fHHSSFHFASREL: € %82 drx%, HABFE 2 5 (1-x)%
add $rtemp, $rs, $Z€r0 gy py s o B4R A I, R HAAT I 1) SRR )
add $rs, $rt, $zero 1.1%(x+1-x)=1.1 f%

add $rt, srtemp, $7€r0  mak Sz IIRIE AR, FEFEHATI A, Bk 1
AMER B TR HITE L 3x+1-x= (2x+1) f%

xor $rs, $rs, $rt 1.1 < 2x+1 B}, EESEIAFEE X
xor $rt, $rs, $rt HIH AT 40, X > 5%

xor $rs, $rs, $rt



5.29 |[5] <§5.5> This exercise is similar to Exercise 5.2, but this time consider the
effect that the stuck-at-0 faults would have on the multiple-cycle datapath in Figure
5.27. Consider each of the following faults:

a. RegWrite =0

b. MemRead =0

c. MemWrite =0

d. IRWrite =0

e. PCWrite =0

f. PCWriteCond = 0.

%: #RegWrite=0, NIIAMREESERAFFHNTES (W: R-Typefg2. loadiE45) #F

AREIEFAPAT, HATFHEEARESHRE

#MemRead=0, NFrEIRLSANEEIEHIAT, FAFIELSAREIZH

FiMemWrite=0, NIStorefa & ARREIEFIAT, B NFfERS A EEE ANEIE

#IRWrite=0, NI ARELERIAT, BENIRPFAEEAFTNIES

#HPCWrite=0, MFrEHRLSEHALER, FAHEIESHMBEPC+4REEEAPC

#PCWriteCond=0, NIBrabchif& REEIEMIAT, FEANARBEEANER H stk FE|PC

B4k,

#Regdst=0, MFrER-Typefs S&AREIEMIAT, BN HKIFA2TE iR,

FALUSrcA=0, NIFFER-Type. |-Typets4 . load/Stroetg S #ABEEFHIAT, FAE A
BAESUD —RPCHME, MART s HIE

#MemtoReg=0, NIFTHMLoadfs&HATH R, FATARBEARRALUH



5.30 (5] <§5.5> This exercise is similar to Exercise 5.29, but this time consider
stuck-at-1 faults (the signal is always 1).

%: HRegWrite=1, NIIAAFEESERAFHFAENIESL (W: Store¥g4 . BranchiE %)

AR IEMAIAT, FAFARRETATENSERAE;

#MemRead=1, NIEELoad$i&sMH AT TTREHSE, BH A REIE T BER I Es R

FMemWrite=1, NIEEStorefgAMHHAMMIESRNREERBIT, FRREKETHESA

#HIRWrite=1, NFTHIRLSMAREHRPAT, FAHIRFENRIF GER LS

#PCWrite=1, WHTETRLSEHALEM, SMrBEHSEAPC, M F&IESHURAHEIR

#PCWriteCond=1, N|kxBrabchigsrHIr AR AT REHEE, KR APCH A RSB A

#% H frihhk
Ak,

#Regdst=1, NlLoadg4MI-Typets & #ARCIEHIINIT, B4 B RIFfF3e4s E5ix

#ALUSrcA=1, NFTHR-Typefs4HMBranchigSHRREEMIAT, FAE A
BAERONSLRIEY B, AR FFaaEdE;

FiMemtoReg=1, NIFTAR-Typefe&HITH IR, K AFAEHRE AR RIFMERRLH LR



5.32 15] <§5.5> We wish to add the instruction Tui (load upper immediate) de-
scribed in Chapter 3 to the multicycle datapath described in this chapter. Use the
same structure of the multicycle datapath of Figure 5.28 on page 323 and show the
necessary modifications to the finite state machine of Figure 5.38 on page 339. You
may find it helpful to examine the execution steps shown on pages 325 through 329
and consider the steps that will need to be performed to execute the new instruc-
tion. How many cycles are required to implement this instruction?

2. luifg4Al-Typetgz: |001111|00000| Rt | Imm16
HINGe R 1641 B HUE B F AR RIFIF L1640, K1667°40. REXRY B

R I0AE Bl % S Imm 16x216, AR5 Mi$zeroklin, 45HE%ERt. BEABKWT:

(D FERRIMF ST B LB, MHAF=MY BRI T R);

(2) #I—MEHIESEXop, ¥ REEREEGIESEXopMEMITY RERME

EXop=01: ¥ f&; EXop=10: FFE5¥ E; EXop=11: &N ZFY E;

(3) #BHIE 5 HEERREXop 24, HALEHIE SR TR-Typets 4

(4) HTP BRHTTBS, FERALUScB=10FIALUSrcB=11]Hk 7 E 11—
MEXop#EHlES, HEEIEFIIE.
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5.35 [15] <§5.5> Consider a change to the multiple-cycle implementation that
alters the register file so that it has only one read port. Describe (via a diagram) any
additional changes that will need to be made to the datapath in order to support
this modification. Modity the finite state machine to indicate how the instructions
will work, given your new datapath.

ST MRRAF O, BAFEKRAFB AR, IERAELE—A2
A, RIEHE—1EFB.

ARIBILH —AMigibtbug O, FrUAEIN— N2 RERES, AT EEARNFE
B EHAEERE MmO, WREEIEDA, WATREEXERIB, FTPAEIN—E
HE5, DHEIZERAKLREBH,

BB ESIE S A

(1) RegRead: H T2 Bk B2%, 0N O bk ARs, h1NARt

(2) Awrite: Fl F#EHEHEIEEANALLEB, J1IEAA, HONEAB
ATE =ML (FERARRSHERM EEERD
(1) FSREE I A E R, 2 HRANB, HFEH ST —ANEh e Bl E
(2) FEERB FBLPEEEA, XFEAER-TypefBranchia & E 88—~ A HkiEB
(3) ZEE R F LT 25EB, XA, load/storeFIOrifa A #FE R in— A E HAE J LA,
R-TypefBranchig4 9 tL 2238 in—AN & Bk 1A
AN E LA EI R CPIANHE ! WANCPIEA? WA/~ UEQR)BICPIR /!
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5.36 [15] <§5.5> Two important parameters control the performance of a pro-
cessor: cycle time and cycles per instruction. There is an enduring trade-off be-
tween these two parameters in the design process of microprocessors. While some
designers prefer to increase the processor frequency at the expense of large CPI,
other designers follow a different school of thought in which reducing the CPI
comes at the expense of lower processor frequency.

Consider the following machines, and compare their performance using the SPEC
CPUint 2000 data from Figure 3.26 on page 228.

M 1: The multicycle datapath of Chapter 5 with a 1 GHz clock.

M2: A machine like the multicycle datapath of Chapter 5, except that register
updates are done in the same clock cycle as a memory read or ALU operation.

Thus in Figure 5.38 on page 339, states 6 and 7 and states 3 and 4 are combined.

This machine has an 3.2 GHz clock, since the register update increases the length
of the critical path.

M3: A machine like M2 except that effective address calculations are done in the

same clock cycle as a memory access. Thus states 2, 3, and 4 can be combined, as
can 2 and 5, as well as 6 and 7. This machine has a 2.8 GHz clock because of the
long cycle created by combining address calculation and memory access.

Find out which of the machines is fastest. Are there instruction mixes that would
make another machine faster, and if so, what are they?
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2. K3-26F1 7~ [FISPECINT20007R &35 4% K «
Load: 25% 5 4 3
Store:10% 4 4 3
Bran: 11% 3 3 3
Jump:2% 3 3 3
ALU: 52% 4 3 3

ME FRRSE 2 Hr, [50:
M1 FiR & 25454 HICPI4rHIk5. 4. 3. 3. 4
M2 EiR &8 S HICPIA A k4. 4. 3. 3. 3
M3F iR &I HICPIAAI83. 3. 3. 3. 3

MIPS,,,=1G / 4.12 = 242.7
MIPS,,,=3.2 G / 3.35 =955.2
MIPS,,=2.8 G / 3 = 933.3

M2FIM3XFMIE T AR A, M2RMSESUR B I, HERR!
B4 E 54 load/storedg &1, MIMITEE HH!

CPl,,,=25%x5+10%x4+11%x3+2%x3+52%x4=4.12
CPI,,,=25%x4+10%x4+11%x3+2%x3+52%x3=3.35
CPl,,3=25%x3+10%x3+11%x3+2%x3+52%Xx3=3



5.37 (20| <§5.5> Your friends at C? (Creative Computer Corporation) have de-

termined that the critical path that sets the clock cycle length of the multicycle
datapath is memory access for loads and stores (not for fetching instructions). This

has caused their newest implementation of the MIPS 30000 to run at a clock rate

of 4.8 GHz rather than the target clock rate of 5.6 GHz. However, Clara at C’ has
a solution. If all the cycles that access memory are broken into two clock cycles,

then the machine can run at its target clock rate.

Using the SPEC CPUint 2000 mixes shown in Chapter 3 (Figure 3.26 on page
228), determine how much faster the machine with the two-cycle memory
accesses is compared with the 4.8 GHz machine with single-cycle memory access.
Assume that all jumps and branches take the same number of cycles and that the
set instructions and arithmetic immediate instructions are implemented as R-type
instructions. Would you consider the further step of splitting instruction fetch
into two cycles if it would raise the clock rate up to 6.4 GHz? Why?

ZEEH R —&, tHaEkEHSFHIRSKICPL, REHRIENLES RSP RE
HMIPSH, STMIPSEH#ETHLE .

RAL BB 5ENLES R KRR A R .



% K3-26F R ISPECINT20007B&F5 4 #ZE N -
Load: 25% 6 5 cpj  =2506x6+10%x5+11%x3+2%x3+52%x4=4.47
Store:10% 5 4 CPI,,,=25%x5+10%x4+11%x3+2%x3+52%x4=4.12
Bran: 11% 3 3 MIPS,,,=5.6G / 4.47 = 1253

Jump:2% 3 3
MIPS,,,=4.8G / 4.12 =1165
ALU: 52% 4 4

BB R BRI EEMLP _EIR K RIE L HICPIZ A A: 6. 54 34 3. 4
BB 2 AR SSM2F L& RI8 L HICPIA B R: 5. 4. 3. 3. 4

FH AT L, 308 A B S A U] A XA R SR B 4
B — P HEETE 4 B AN R R LS M3 FI K- 2R IR S HICPIA AR : 7+ 64 44 4. 5
CPl,,;=25%x 7+10%Xx6+11%x4+2%x4+52%x5=5.47

CERr B2 A48 m—A N8 A, BrLlCPI,,,=CPl,,,+1=5.47

MIPS,,,;=6.4 G / 5.47 = 1170

FH AT W, 3 — 2P HEE R A SO XU B AR MIPSE22 /N T, Br AATATEL.

At AP JRAL I PP A2 1 0.8G, (HARAAF?

Kb BE AR 3 X Blload/Storets 4, T4 HFES KBIFIEHRS!



5.38 [20] <§5.5> Suppose there were a MIPS instruction, called bcmp, that com-
pares two blocks of words in two memory addresses. Assume that this instruction
requires that the starting address of the first block is in register $t1 and the starting
address of the second block is in $t2, and that the number of words to compare is
in $t3 (which is $t3>0). Assume the instruction can leave the result (the address
of the first mismatch or zero if a complete match) in $t1 and/or $t2. Further-
more, assume that the values of these registers as well as registers $t4 and t5 can
be destroyed in executing this instruction (so that the registers can be used as tem-
poraries to execute the instruction).

Write the MIPS assembly language program to implement (emulate the behavior
of) block compare. How many instructions will be executed to compare two 100-
word blocks? Using the CPI of the instructions in the multicycle implementation,
how many cycles are needed for the 100-word block compare?



SHEERMT
beq $t3, $zero, done
compare: lw  $t4, O($t1)
W $t5, 0($t2)
bne $t4, $t5, done
addi $t1, $t1, 4
addi $t2, $t2, 4
addi $t3, $t3, -1
bne $t3, $zero, compare
addi $t2, $zero, O
done:

B e LR B A 100, NPT RIHR4AECh: 1+100x7+1=7024F5 4%

Hrb, load¥584K: 100x2=200%%, AR H5x2004-=1000
branch#f4 k. 1+2x100=201%, JFIHIE H3x2014=603
addi}g4 k. 1+3x100=301%%, A H4x3014=1204
Fril, EJE#I%CAH1000+603+1204=2807



5.50 (6] <§5.6> Exceptions occur when a control flow change is required to han-
dle an unexpected event in the processor. How can the cause and the instruction
that caused the exception, be represented by the hardware in a MIPS machine?
Give two examples for conditions that a processor can handle by restarting execu-
tion of instructions after handling the exception, and two others for exceptions
that lead to program termination.

SHEER:

(1) F#HEJRF W LLdRFECause & A48

(2) Wis CREFRERIEQE T FHELS R FRFAEEPCH

(3) RWEH=FF: #FE. BFE. &b
WM HIEFESITHITE S E R ST TIEREPITH “ R HEFMH . LR
[ B 5 A M P K8 BT AT (0 BRIT) BREIEREFFIAT (e . BRECHY
0. FREERIEMRE. RIPHES)
HFE: AR LR — RNV E BB EIE< . W80x86F HIFE<“ INT n”
PATENX & IRLH, CPURZITIEIEARITHIRER, 2l —Mye N EEER
EPIT, PITRE, BIREIXFELERK—&ES (WAL FFEIIT.
2k RAEARNAIKE RSB R LA IR PATIE S W BB
b, HIREHEE. MK, REGEEXIEFEFEHRIERS.



5.51 [6] <§5.6> Exception detection is an important aspect of exception han-
dling. Try to identity the cycle in which the following exceptions can be detected
for the multicycle datapath in Figure 5.28 on page 323.

Consider the following exceptions:
a. Divide by zero exception (suppose we use the same ALU for division in one
cycle, and that it is recognized by the rest of the control)
¢. Invalid instruction

d. External interrupt
e. Invalid instruction memory address

f. Invalid data memory address

SEER:
a. “BRECH 0" 8 ] AR B B34S R B A T R
b. “ ¥t " 7% v] IER-Ty pets-& 1 78 B R S A T A Il
C. “ TMIe4" 78 AT UUAE B H/300 ) Bt AT kil
d. “HhER W R AT AR R4 TE 2 1 58 B B AT R
e. “ LRI A Huhk” FH mT DAZEEUEE 4 B A
f. “ T EIE ML 55 AT LAEEload/storeds 2 (R bk & FE BAS



5.53 [30] <§5.7> Microcode has been used to add more powertul instructions to

an instruction set; let’s explore the potential benefits of this approach. Devise a
strategy for implementing the bcmp instruction described in Exercise 5.38 using
the multicycle datapath and microcode. You will probably need to make some

changes to the datapath in order to efficiently implement the bcmp instruction.
Provide a description of your proposed changes and describe how the bcmp in-

struction will work. Are there any advantages that can be obtained by adding inter-
nal registers to the datapath to help support the bcmp instruction? Estimate the

improvement in performance that you can achieve by implementing the instruc-
tion in hardware (as opposed to the software solution you obtained in Exercise

5.38) and explain where the performance increase comes from.

BAE LR LA T T vt

« TRLHNCHwAE . Hlasdig (5RAHESHE
- RS HIThEE (HREEMRTLER)

« BIEE BB N

- EHME S NEE

A RS HLH B



44 E: bemp rs, rd, rc, rtl, rt2
RSN R: 4 26 21 16 11 6

op rs rt rd rel re2

6 bits 5 bits 5 bits 5 bits 5 bits 5 bits
a2 HIThEE:
LEBAN B Hredg Y, W Rre=00t+ 2 &AM, 4REEPAT FERIES, BN
rsFIrd Fr$s WA R TUR IR F LB N E, HEIRELUTER:
(1) F—XEIEAMHEE, M, REAHESFEIEN K HEEErs Frd
(2) FTAHIEEMSE, M, REOfFKErsH
rtlIMri2 2 llm it A4S, A8 PITERETMAT s, rd. re#SBRER,
H— M EFPBORFEIR A -
beq rd, $zero, done
comp: Iw rtl, O(rs)
lw  rt2, 0(rt)
bne rtl, rt2, done
addi rs,rs, 4
addi rt, rt, 4
addi rd, rd, -1
bne rd, $zero, compare
addi rs, $zero, 0

done:



RATHAER 4, ELHMRTLERZ /1, JcHEHnERE:
ETIREHRTLER N :  (BRAFLERAESD

if Reg[rd]=0 then Exec-Next else =0
loop: Addr € R[rs], R[rtl] € Mem[Addr] @
Addr € R][rt] , R[rt2] € Mem[Addr] J 20
if R[rt1]#R[rt2] then Exec-Next else v
R[rs] € R[rs]+4, R[rt] € R[rt]+4 M[Reg[rs]]->rt1, M[Reg[rt]]->rt2

R[rd] € R[rd]-1
iIf R[rd]=0 then
R[rs] € 0, Exec_Next

else
go to loop

v B R 2K
« ZEMem A dr &b Mt MUX B FEAS [R] (1 B b bk g
« 7EReg WA A EOMUX B3 7R 7 785 i Reglrd]-1
« #EReg IRAAr IIMUX LLIEFEA [A] i B bk
« 7EReg FWDatart MUX PLIE#EAS [F] i 5 Hi i 70 Reg[rd]
« ZEALUSrcBAL N 17 f1“0”, PABIAT-1/-0" #4E

Reg[rs]+4, Reg|rt]+4

BRI B MR A 25 P
o PR B HIMUX 45 35 B AT 5

A RRFILE B ole
o« WINETIRS, BRSE NN T v




7~ T PCWriteCond / % PCSource

i

PCW/rite | Oulpuls IL ALUOP

" 1] p I
[loD] ALUSICE
MemHead | Control
MemWiite | | ALUSreA
= Op | RegWrite
MemtoReq ".1 5-0] | g
IRWrits / [RegDst ]
"l\._\.___;
Instruction [25-0]
—
Instruction
[31-26] -
Instruction > ] Read
—@—1 - u
Address [25-21] [ 2 U register 1 . o
Instruction AN data 1
Memory [20-16] 9 | 7 .I' rneeg?:terE
MemData 7= |nsiruction >  Registers
[15-0] Wnte  pead
Write regsler  yata 2
data Instruction
register Write
data
Instruction
[15—-0]
Memory .u
data | sign | ] [shin)\ || — ALY L
register extend left 2 km“lmlfa
b )
Instruction [5-0]




DA R A= S 2B
— lorD
e 0: PC->Address
 1: ALUout->Address
A->Address
B->Address

st
Inst[25-21]->WriteReg
Inst[20-16]->WriteReg
Inst[15-11]->WriteReg
Inst[10- 6]->WriteReg
. Inst[ 5- 1]->WriteReg
— ALUSrcB

— Reg

o LN

[
howhEe o

s NR3E

[

e 4. 0->ALUSrcB
e 5: 1->ALUSrcB

— MemtoReg

* 0: Memory Data ->Reg’'Write Data
« 1. ALUout -> Reg’Write Data
« 2. 0-> Reg’Write Data

BN E RIS 5

— ReadRegl: ##|Read ReglFIMUX
* 0. Inst[25-21]->ReadRegl
* 1. Inst[20-16]-> ReadReg1l
e 2. Inst[15-11]-> ReadReg1l
« 3: Inst[10- 6]-> ReadRegl

— ReadReg2: #E#i|Read Reg2HIMUX
* 0: Inst[20-16]-> ReadReg2
e 1. Inst[5- 1]-> ReadReg2



Instruction keich Imetruction decodes - ead Reg1:1
register fetch ALUSeIA_l
1 —
peeaa) o ALUSAEZI00
Start ALUSKEE = 11
ALUOp =00
i .
m'? ) Ox
ot <5 & =
0 Py » n
= oy =%
00 ls) g S
Mamory addrass Branch JUrmip
computation Exacution complation ! comphetion

ReadReg2=1
ALUSelA=1
ALUSelB=000

2 & 8 -
_ _ ALUSreA =1 .
ALLUSKEE =10 AlLUSeB = oD ALUOp = 01 PCSource = 10
ALUCR =00 ALUOp =10 PCWriteCond
.-'"% PCSource =01
B

s &
pur @,
iI:'L hemary < Marmary =
O | access ACCESS H-lype complalian
E y roam LRAIREILINF S0 5 ReadReg1=40
MemWrite . +H)410,11,...... 23 b=
lorD =1 ik ,ﬁ%izz - ALUOp=sub// RegDst=010
9=0 ) R HZIMF A BOFIAT MemtoReg=0

A=A, HRRYE RegWr

PR ZFRIAT 431, ReadReg1=1) )
e Fil—A=/AROMBR—4 ALUSelB=101 RZF=1
4 HHEE OZ A F B SEBRAR || ALUOp=sub I\I}EQE%SEOOOlO
sqDst = B A 1 43 _ emtoReg=
e N : B ZF=0 R

MemtoReg = 1



A 14b: ZF=0l|Next paddr = 0; ZF=1J|Next paddr = paddr+1
2248k ZF=0l|Next paddr = paddr+1; ZF=1JNext paddr =0

4234k ZF=0N|Next paddr = 01011; ZF=1]Next paddr = paddr+1

S SELRIG3 248 AT LA — - MUXSEDE
7SR — M B BOE R, HIIRN:

MZF=0RF, FHIAL101113%:401011, ZF=1RRNEH 1

it 0B A T B AR R R = A bk, A=
A RE 10l 5 ZF B RSB T ERAE .

STAddrCtZERIE THATBE, LR =AFa R

000
001
010
011

100
101
110

Next paddr =0
paddr = dispatch ROM 1
pnaddr = dispatch ROM 2

Next
Next
Next

Next
Next
Next

paddr = paddr + 1

naddr = 7332 14k %0
naddr = 73> 24b % H
naddr = 43> 34k H

A RREE MRS E N L
AddrCtI#Hl{E 5 R EUERI AT,

#F (CS)

AddrCtl

f paddr

o
ey

StatP Req

M
65432 10

0

Co_ o)

{o_1)

A

o

To |

nen

ROM?2||ROM1

AR

N

A

Zero

Opcode




e LR BCAN #0, RIEH FRARSHLOT40:
BINITEO T, AR SEEN TR 2 B i B BT BB 2+1+12n+1=4+12n
BIAITEOL T, FHBASLI T84 B s R 2 SO B T
load$844: 2n%k, JFAHIECH5x2n=10n
branch#g4&4: (1+2n)%&, JFHAECA3x(1+2n)=3+6n
addifgA: (1+3n)%%, FHE 4x(1+3n)=4+12n
Fril, SEHEAECA10n+34+6Nn+4+12n=7+28n

HET 4. FH 25 ) BA SR I B A A SRR L L H R A LR B D IR — 15 2
JR R R A
FEFEHNRE:
(1) ®&HFKXT, BHFANEBRIESEENIES FEMEE; TR SEI N A2
(2) BHFKT, BRIESRAFER, TRIELSCEHNHER; mE4AFXT, F
) #5048 v L E 8 A
B MANERAZAPEGEEE, R AREEEE, HERE?
FRHSEIE AR, EARP R REE R RE 254 0!
BE2: MRt IMr2 N F AR, FRAEFLE?
AT AR AL BR B B . DRGSR WUDRB . SHENMEITTE.



