
第二章 指令：机器语言

作业参考答案

第二章 指令-机器语言

最自然的考虑办法：先右移：000000 xxxxxxxxx xxxxxxxxxxxxxxxxx
再与某个掩码进行“与”操作：000000 000000000 11111111111111111

000000 000000000 xxxxxxxxxxxxxxxxx
用上述两条指令行不行？
要用其他办法（先左移9位，再右移15位） sll $t0, $t3, 9

srl $t0, $t0, 15 若j=21，则可用右移和与实现：

srl $t0, $t3, 6
andi $t0, $t0, 65535

000000 00000 01011 01000 00110 000000
001100 01000 01000 1111 1111 1111 1111机器码

若第一条指令中的$t0改成其他

寄存器，则会带来什么问题？

srl $t0, $t3, 6
andi $t0, $t0, 131071

不行，andi的立即数只有16位，而j-i=17位，131071有17个1！

第二章 指令-机器语言

复习：MIPS程序和数据的存储器分配
• 每个MIPS程序都按如下规定进行存储器分配

• 每个可执行文件都按如下规定给出代码和数据的地址

栈区位于堆栈高端，堆区位于堆栈低端

• 栈(Stack)区存放每个过程的局部数据（也称自动变

量），从高往低长，从被调用过程返回后释放

• 堆(heap)区存放程序的动态数据（如：C中的malloc
申请区域、链表等），从低往高长，执行free后释放

静态数据区存放的是全局变量（也称静态变量），指所

有过程之外声明的变量和用Static声明的变量

从固定的0x1000 0000处 开始存放

全局指针$gp固定为0x1000 8000，其16位偏移量的访

问范围为0x1000 0000 到0x1000 ffff，可遍及整个静态

数据区的访问

程序代码从固定的0x0040 0000处开始存放

故PC的初始值为0x0040 0000
BACK

• 每个过程都有自己的

栈区，称为栈帧

（Stack frame）
• 堆栈由若干栈帧组成

• 用专门的帧指针寄存

器指定起始位置

• 当前栈帧范围在帧指

针和栈指针之间

• 程序执行时，栈指针

可移动，帧指针不变

所以，过程内对栈信

息的访问大多通过帧

指针进行，简便

假定P调用Q

P frame

Q frame

P帧中Q所

用的参数

若调用时将
返回地址入
栈，则在P
帧中存放返
回地址

需保存的
寄存器

Q所用的

局部和临
时变量MIPS返回地址处理有所不同：调

用指令jal把返回地址保存在&ra
中，Q把&ra入栈，返回前出栈，
返回指令jr再根据&ra返回

MIPS中帧指针寄存器为&fp

Q传给其他

过程的参数

复习：栈帧的概念

复习： MIPS中的过程调用（假定P调用Q）
• 程序可访问的寄存器组是所有过程共享的资源，给定时刻只能被一个过程使用

• 过程调用时，一个过程中使用的寄存器的值不能被另一个过程覆盖！

• MIPS的寄存器使用约定：

– 保存寄存器$s0 ~$s7 的值在从被调用过程返回后还要被用，被调用者需要保留

– 临时寄存器$t0 ~$t9的值在从被调用过程返回后不需要被用（需要的话，由调用者保存） ，

被调用者可以随意使用

– 参数寄存器$a0~$a3在从被调用过程返回后不需要被用（需要的话，由调用者保存在栈帧或

其他寄存器中），被调用者可以随意使用

– 全局指针寄存器$gp的值不变

– 在过程调用时帧指针寄存器$fp用栈指针寄存器$sp- 4来初始化

• 需在被调用过程Q中入栈保存的寄存器（称为被调用者保存）

– 返回地址$ra (如果Q又调用R，则$ra内容会被破坏，故需保存)
– 保存寄存器$s0 ~$s7 (从Q返回后P可能还会用到，Q中用的话就被破坏，故需保存)

• 除了上述寄存器以外，所有局部数组和结构也要入栈保存

• 如果局部变量发生寄存器溢出（寄存器不够分配），则也要入栈

• 每个处理器对栈帧规定的“调用者保存”和“被调用者保存”的寄存器可能不同。例：

– x86处理器中返回地址保存在调用过程栈帧中；而MIPS则在被调用过程中保存

– x86处理器中调用参数都保存在调用过程栈帧中；而MIPS则在被调用过程中保存额外参数

– X86处理器中调用过程的帧指针保存在被调用过程的栈帧中；MIPS也一样。

第二章 指令-机器语言

题目分析如下：
程序由三个过程组成，全局静态变量有一个i，假定分配给$s0
（1）过程set_array：入口参数为num，没有返回参数，有一个局部数组，被调用过程为

compare(num, i) 。所以其栈帧中除了保留所用的保存寄存器外，必须要保留返回地址

（和旧的$fp），并给局部数组预留4x10=40个字节的空间；

（2）过程compare：入口参数为a和b，有一个返回参数，没有局部自动变量，被调用过程为

sub(a, b)。所以其栈帧中除了保留所用的保存寄存器外，必须要保留返回地址(和旧$fp) ；

（3）过程sub：入口参数为a和b，有一个返回参数，没有局部自动变量，没有被调用过程

（是一个叶过程）。所以栈帧中除了保留所要的保存寄存器外，不需要保留其他信息

（如果保留返回地址也不会错，但需额外的指令来执行保存和恢复，增加程序执行时间，一

般不对叶过程的返回地址进行保存）

这里需要说明的是：

题目中给出的程序是示意性的，实际上该程序没有任何意义，为什么这么说？

过程set_array所做的工作就是把比较的结果写到数组array中，没有任何返回值，但数组array

是局部的，当从set_array返回后，该过程的栈帧全部被释放，当然array中的值也全部无效。

相当于程序没有做任何工作。

第二章 指令-机器语言

Set-array (int num)函数：
Set-array:

(保存$ra和$s0-$s4)
……
addi $sp, $sp, -40
move $s1, $sp
move $s4, $a0 ;$s4=num
move $s0, $zero ;i=0

for-loop:slti $s2, $s0, 10 ;if i<10, $s2=1
beq $s2, $zero, exit ;if i>=10, exit
sll $s3, $s0, 2 ;i*4
add $s3, $s3, $s1 ;$s3=array[i]
move $a0, $s4 ;$a0=num
move $a1, $s0 ;$a1=i
jal compare ;call compare
sw $v0, 0($s3)
addi $s0, $s0, 1
j for-loop

Exit: addi $sp, $sp, 40
…… (恢复$ra和$s0-$s4)
jr $ra

Sub (int a, int b)函数：
sub: addi $sp, $sp,-4

sw $ra, 0($sp)
sub $v0, $a0, $a1
lw $ra, 0($sp)
addi $sp, $sp,4
jr $ra

compare (int a, int b)函数：
Compare:addi $sp, $sp, -8

sw $ra, 4($sp)
sw $s1, 0($sp)
jal sub
slt $s1, $v0, $zero ; if<0, $s1=1
beq $s1, $zero, else ;
move $v0, $zero
j exit

else: ori $v0, $zer0, 1
exit: lw $s1, 0($sp)

lw $ra, 4($sp)
addi $sp, $sp, 8
jr $ra

Assuming variables i~ $s0, and base address of array is in $s1

第二章 指令-机器语言

……$sp

调用set-array前
从set-array返回后

调用compare前
从compare返回后

……
$fp $ra

$s0

$s2
$s3

$s1

$s4

$sp

调用sub后

……

$sp
$fp

$ra
$s0

$s2
$s3

$s1

$s4

$ra
$s1

调用sub前
从sub返回后

……

$sp
$fp

$ra
$s0

$s2
$s3

$s1

$s4

array array

$ra
$s1

array

根据书中图2-16可以看出：每次过程调用开始，总是把当前$sp- 4送给$fp；
MIPS保存和恢复$fp的方式：若程序中用到$fp时就在被调用者栈帧中保存调用者的

$fp，然后把$sp-4送$fp；若不用时，则不保存$fp的值。
请参看附录A-6！

第二章 指令-机器语言

;$t0=0
;if $a1=0 finish
;$t0=$t0+$a0
;$a1=$a1-1
;
;$t0=$t0+100
;$v0=$t0

该指令序列完成以下功能：$v0=ab+100

其功能就是将$a0的值加$a1次（即axb）再加100

第二章 指令-机器语言

;$a2=$a2x4=10000
;$a3=$a3x4=10000
;$v0初始化为0
;$t0(偏移量:ix4)初始化为0
;$t4=address of array[i]
;$t4=array[i]
;$t1(偏移量:jx4)初始化为0
;$t3=address of array[j]
;$t3=array[j]
;if array[i] ≠ array[i] , skip
;$v0=$v0+1
;j=j+4
;if j≠10000, 继续内循环
;i=i+4
;if i≠10000, 继续外循环

功能：$v0中存放的是两个数组中相同元素的个数。

第二章 指令-机器语言

2.30中程序最坏的情况就是：两个数组所有元素都相等，这样每次循环都不
会执行skip。因此， 指令总条数为：5+2500x(3+2500x6+2)=37512505
其中：add,addi和sll的指令条数为：4+2500x(2+2500x3+1)=18757504

lw和bne的指令条数为： 1+2500x(1+2500x3+1)=18755001

所以：程序执行的时间为：(2GHzclock的clock time=1/2G=0.5ns)
(18757504x1+18755001x2)x0.5ns=28133753ns≈0.028s

第二章 指令-机器语言

是或运算，其中一个操作数为立即数25，故可用ori指令实现：

ori $t1, $t0, 25 机器码为：001101 01000 01001 0000 0000 0001 1001

13 8 9 25

如果把25换成65536，那指令是不是就换成： ori $t1, $t0, 65536 ？
65536（1 0000 0000 0000 0000）不能用16位立即数表示。此时的指令序列应为：

lui $t1, 1
or $t1, $t0, $t1 若换成65537呢？

lui $t1, 1
addi $t1, $t1, 1
or $t1, $t0, $t1

由此可见，并不是所有的立即数都按相同的方式处理！

第二章 指令-机器语言

修改后的代码如下：

addi $v0, $zero, 0
loop: lw $v1, 0($a0)

sw $v1, 0($a1)
beq $v1, $zero, exit
addi $a0, $a0, 4
addi $a1, $a1, 4
addi $v0, $v0, 1
j loop

exit:

第二章 指令-机器语言

Beq是一个I-Type指令，可以跳转到当前指令前，也可以跳转到当前指令后。

其计算公式为：PC+4+offset（16位立即数）

故偏移量offset是一个16位带符号整数（4的倍数，用补码表示）。

其正跳范围为：0000 0000 0000 0100（+4）~ 0111 1111 1111 1100（+215- 4）
负跳范围为：1000 0000 0000 0000（-215）~ 1111 1111 1111 1100（- 4）

超过以上范围的跳转就不能用上述指令序列实现。应该改成以下序列：

here: bne $s0, $s2, skip
j there

Skip:
……

there: add $s0, $s0, $s0

